Topological Phase Control of Surface States in Bi2Se3 via Spin–Orbit Coupling Modulation through Interface Engineering between HfO2–X

The direct control of topological surface states in topological insulators is an important prerequisite for the application of these materials. Conventional attempts to utilize magnetic doping, mechanical tuning, structural engineering, external bias, and external magnetic fields suffer from a lack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-03, Vol.12 (10), p.12215-12226
Hauptverfasser: Jeong, Kwangsik, Park, Hanbum, Chae, Jimin, Sim, Kyung-ik, Yang, Won Jun, Kim, Jong-hoon, Hong, Seok-bo, Kim, Jae Hoon, Cho, Mann-ho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12226
container_issue 10
container_start_page 12215
container_title ACS applied materials & interfaces
container_volume 12
creator Jeong, Kwangsik
Park, Hanbum
Chae, Jimin
Sim, Kyung-ik
Yang, Won Jun
Kim, Jong-hoon
Hong, Seok-bo
Kim, Jae Hoon
Cho, Mann-ho
description The direct control of topological surface states in topological insulators is an important prerequisite for the application of these materials. Conventional attempts to utilize magnetic doping, mechanical tuning, structural engineering, external bias, and external magnetic fields suffer from a lack of reversible switching and have limited tunability. We demonstrate the direct control of topological phases in a bismuth selenide (Bi2Se3) topological insulator in 3 nm molecular beam epitaxy-grown films through the hybridization of the topological surface states with the hafnium (Hf) d-orbitals in the topmost layer of an underlying oxygen-deficient hafnium oxide (HfO2) substrate. The higher angular momentum of the d-orbitals of Hf is hybridized strongly by topological insulators, thereby enhancing the spin–orbit coupling and perturbing the topological surface states asymmetry in Bi2Se3. As the oxygen defect is cured or generated reversibly by external electric fields, our research facilitates the complete electrical control of the topological phases of topological insulators by controlling the defect density in the adjacent transition metal oxide. In addition, this mechanism can be applied in other related topological materials such as Weyl and Dirac semimetals in future endeavors to facilitate practical applications in unit-element devices for quantum computing and quantum communication.
doi_str_mv 10.1021/acsami.9b17555
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2359409679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2359409679</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-1b0cbea61e8e6a66cdae05c21e9995bd53c18388b07fd1c31634a43b9bf716e53</originalsourceid><addsrcrecordid>eNo9kD1PwzAQQCMEEqWwMntESC3-iJN4hKrQSkVFapHYItu5pK5Su8QOrKzM_EN-CalSMd0N755OL4quCR4TTMmd1F7uzFgoknLOT6IBEXE8yiinp_97HJ9HF95vMU4YxXwQfa_d3tWuMlrW6GUjPaCJs6FxNXIlWrVNKTWgVZABPDIWPRi6AoY-jESrvbG_Xz_LRpnQHbX72tgKPbuirWUwzqKwaVxbbdDcBug9U1sZC9AcQAXhE8CiWbmknebtMjorZe3h6jiH0evjdD2ZjRbLp_nkfjGSlLIwIgprBTIhkEEik0QXEjDXlIAQgquCM00ylmUKp2VBNCMJi2XMlFBlShLgbBjd9N59495b8CHfGa-hrqUF1_qcMi5iLJJUdOhtj3Zp861rG9s9lhOcH3rnfe_82Jv9AcFCd_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359409679</pqid></control><display><type>article</type><title>Topological Phase Control of Surface States in Bi2Se3 via Spin–Orbit Coupling Modulation through Interface Engineering between HfO2–X</title><source>ACS Publications</source><creator>Jeong, Kwangsik ; Park, Hanbum ; Chae, Jimin ; Sim, Kyung-ik ; Yang, Won Jun ; Kim, Jong-hoon ; Hong, Seok-bo ; Kim, Jae Hoon ; Cho, Mann-ho</creator><creatorcontrib>Jeong, Kwangsik ; Park, Hanbum ; Chae, Jimin ; Sim, Kyung-ik ; Yang, Won Jun ; Kim, Jong-hoon ; Hong, Seok-bo ; Kim, Jae Hoon ; Cho, Mann-ho</creatorcontrib><description>The direct control of topological surface states in topological insulators is an important prerequisite for the application of these materials. Conventional attempts to utilize magnetic doping, mechanical tuning, structural engineering, external bias, and external magnetic fields suffer from a lack of reversible switching and have limited tunability. We demonstrate the direct control of topological phases in a bismuth selenide (Bi2Se3) topological insulator in 3 nm molecular beam epitaxy-grown films through the hybridization of the topological surface states with the hafnium (Hf) d-orbitals in the topmost layer of an underlying oxygen-deficient hafnium oxide (HfO2) substrate. The higher angular momentum of the d-orbitals of Hf is hybridized strongly by topological insulators, thereby enhancing the spin–orbit coupling and perturbing the topological surface states asymmetry in Bi2Se3. As the oxygen defect is cured or generated reversibly by external electric fields, our research facilitates the complete electrical control of the topological phases of topological insulators by controlling the defect density in the adjacent transition metal oxide. In addition, this mechanism can be applied in other related topological materials such as Weyl and Dirac semimetals in future endeavors to facilitate practical applications in unit-element devices for quantum computing and quantum communication.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b17555</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-03, Vol.12 (10), p.12215-12226</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5621-3676 ; 0000-0002-2804-7092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b17555$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b17555$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27078,27926,27927,56740,56790</link.rule.ids></links><search><creatorcontrib>Jeong, Kwangsik</creatorcontrib><creatorcontrib>Park, Hanbum</creatorcontrib><creatorcontrib>Chae, Jimin</creatorcontrib><creatorcontrib>Sim, Kyung-ik</creatorcontrib><creatorcontrib>Yang, Won Jun</creatorcontrib><creatorcontrib>Kim, Jong-hoon</creatorcontrib><creatorcontrib>Hong, Seok-bo</creatorcontrib><creatorcontrib>Kim, Jae Hoon</creatorcontrib><creatorcontrib>Cho, Mann-ho</creatorcontrib><title>Topological Phase Control of Surface States in Bi2Se3 via Spin–Orbit Coupling Modulation through Interface Engineering between HfO2–X</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The direct control of topological surface states in topological insulators is an important prerequisite for the application of these materials. Conventional attempts to utilize magnetic doping, mechanical tuning, structural engineering, external bias, and external magnetic fields suffer from a lack of reversible switching and have limited tunability. We demonstrate the direct control of topological phases in a bismuth selenide (Bi2Se3) topological insulator in 3 nm molecular beam epitaxy-grown films through the hybridization of the topological surface states with the hafnium (Hf) d-orbitals in the topmost layer of an underlying oxygen-deficient hafnium oxide (HfO2) substrate. The higher angular momentum of the d-orbitals of Hf is hybridized strongly by topological insulators, thereby enhancing the spin–orbit coupling and perturbing the topological surface states asymmetry in Bi2Se3. As the oxygen defect is cured or generated reversibly by external electric fields, our research facilitates the complete electrical control of the topological phases of topological insulators by controlling the defect density in the adjacent transition metal oxide. In addition, this mechanism can be applied in other related topological materials such as Weyl and Dirac semimetals in future endeavors to facilitate practical applications in unit-element devices for quantum computing and quantum communication.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQQCMEEqWwMntESC3-iJN4hKrQSkVFapHYItu5pK5Su8QOrKzM_EN-CalSMd0N755OL4quCR4TTMmd1F7uzFgoknLOT6IBEXE8yiinp_97HJ9HF95vMU4YxXwQfa_d3tWuMlrW6GUjPaCJs6FxNXIlWrVNKTWgVZABPDIWPRi6AoY-jESrvbG_Xz_LRpnQHbX72tgKPbuirWUwzqKwaVxbbdDcBug9U1sZC9AcQAXhE8CiWbmknebtMjorZe3h6jiH0evjdD2ZjRbLp_nkfjGSlLIwIgprBTIhkEEik0QXEjDXlIAQgquCM00ylmUKp2VBNCMJi2XMlFBlShLgbBjd9N59495b8CHfGa-hrqUF1_qcMi5iLJJUdOhtj3Zp861rG9s9lhOcH3rnfe_82Jv9AcFCd_I</recordid><startdate>20200311</startdate><enddate>20200311</enddate><creator>Jeong, Kwangsik</creator><creator>Park, Hanbum</creator><creator>Chae, Jimin</creator><creator>Sim, Kyung-ik</creator><creator>Yang, Won Jun</creator><creator>Kim, Jong-hoon</creator><creator>Hong, Seok-bo</creator><creator>Kim, Jae Hoon</creator><creator>Cho, Mann-ho</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5621-3676</orcidid><orcidid>https://orcid.org/0000-0002-2804-7092</orcidid></search><sort><creationdate>20200311</creationdate><title>Topological Phase Control of Surface States in Bi2Se3 via Spin–Orbit Coupling Modulation through Interface Engineering between HfO2–X</title><author>Jeong, Kwangsik ; Park, Hanbum ; Chae, Jimin ; Sim, Kyung-ik ; Yang, Won Jun ; Kim, Jong-hoon ; Hong, Seok-bo ; Kim, Jae Hoon ; Cho, Mann-ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-1b0cbea61e8e6a66cdae05c21e9995bd53c18388b07fd1c31634a43b9bf716e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Kwangsik</creatorcontrib><creatorcontrib>Park, Hanbum</creatorcontrib><creatorcontrib>Chae, Jimin</creatorcontrib><creatorcontrib>Sim, Kyung-ik</creatorcontrib><creatorcontrib>Yang, Won Jun</creatorcontrib><creatorcontrib>Kim, Jong-hoon</creatorcontrib><creatorcontrib>Hong, Seok-bo</creatorcontrib><creatorcontrib>Kim, Jae Hoon</creatorcontrib><creatorcontrib>Cho, Mann-ho</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Kwangsik</au><au>Park, Hanbum</au><au>Chae, Jimin</au><au>Sim, Kyung-ik</au><au>Yang, Won Jun</au><au>Kim, Jong-hoon</au><au>Hong, Seok-bo</au><au>Kim, Jae Hoon</au><au>Cho, Mann-ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Phase Control of Surface States in Bi2Se3 via Spin–Orbit Coupling Modulation through Interface Engineering between HfO2–X</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-03-11</date><risdate>2020</risdate><volume>12</volume><issue>10</issue><spage>12215</spage><epage>12226</epage><pages>12215-12226</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The direct control of topological surface states in topological insulators is an important prerequisite for the application of these materials. Conventional attempts to utilize magnetic doping, mechanical tuning, structural engineering, external bias, and external magnetic fields suffer from a lack of reversible switching and have limited tunability. We demonstrate the direct control of topological phases in a bismuth selenide (Bi2Se3) topological insulator in 3 nm molecular beam epitaxy-grown films through the hybridization of the topological surface states with the hafnium (Hf) d-orbitals in the topmost layer of an underlying oxygen-deficient hafnium oxide (HfO2) substrate. The higher angular momentum of the d-orbitals of Hf is hybridized strongly by topological insulators, thereby enhancing the spin–orbit coupling and perturbing the topological surface states asymmetry in Bi2Se3. As the oxygen defect is cured or generated reversibly by external electric fields, our research facilitates the complete electrical control of the topological phases of topological insulators by controlling the defect density in the adjacent transition metal oxide. In addition, this mechanism can be applied in other related topological materials such as Weyl and Dirac semimetals in future endeavors to facilitate practical applications in unit-element devices for quantum computing and quantum communication.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.9b17555</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5621-3676</orcidid><orcidid>https://orcid.org/0000-0002-2804-7092</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-03, Vol.12 (10), p.12215-12226
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2359409679
source ACS Publications
title Topological Phase Control of Surface States in Bi2Se3 via Spin–Orbit Coupling Modulation through Interface Engineering between HfO2–X
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Phase%20Control%20of%20Surface%20States%20in%20Bi2Se3%20via%20Spin%E2%80%93Orbit%20Coupling%20Modulation%20through%20Interface%20Engineering%20between%20HfO2%E2%80%93X&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Jeong,%20Kwangsik&rft.date=2020-03-11&rft.volume=12&rft.issue=10&rft.spage=12215&rft.epage=12226&rft.pages=12215-12226&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b17555&rft_dat=%3Cproquest_acs_j%3E2359409679%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359409679&rft_id=info:pmid/&rfr_iscdi=true