“Clickable” and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‐Specific Cell Attachment
To tailor cell–surface interactions, precise and controlled attachment of cell‐adhesive motifs is required, while any background non‐specific cell and protein adhesion has to be blocked effectively. Herein, a versatile and highly reproducible antifouling surface modification based on “clickable” gro...
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2020-04, Vol.20 (4), p.e1900354-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e1900354 |
container_title | Macromolecular bioscience |
container_volume | 20 |
creator | Poręba, Rafał los Santos Pereira, Andres Pola, Robert Jiang, Siyu Pop‐Georgievski, Ognen Sedláková, Zdeňka Schönherr, Holger |
description | To tailor cell–surface interactions, precise and controlled attachment of cell‐adhesive motifs is required, while any background non‐specific cell and protein adhesion has to be blocked effectively. Herein, a versatile and highly reproducible antifouling surface modification based on “clickable” groups and hierarchically structured diblock copolymer brushes for the controlled attachment of cells is reported. The polymer brush architecture combines an antifouling bottom block of poly(2‐hydroxyethyl methacrylate) poly(HEMA) and an ultrathin azide‐bearing top block, which can participate in well‐established “click” reactions including the highly selective copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction under mild conditions. This straightforward approach allows the rapid conjugation of a cell‐adhesive, alkyne‐bearing cyclic RGD peptide motif, enabling subsequent specific attachment of NIH 3T3 fibroblasts, their extensive proliferation and confluent cell sheet formation after 48 h of incubation. The generally applicable strategy presented in this report can be employed for surface functionalization with diverse alkyne‐bearing biological moieties via CuAAC or copper‐free alkyne‐azide cycloaddition protocols, making it a versatile functionalization approach and a promising tool for tissue engineering, biomaterial implant design, and other applications that require surfaces supporting highly specific cell attachment.
Antifouling diblock copolymer brushes presenting “clickable” azide moieties at the top‐block are endowed with a cell‐adhesive motif to support peptide‐specific cell attachment, leading to confluent cell sheet formation. Importantly, the presented biofunctionalization strategy is realized in a one‐step “click” reaction and does not require any further deactivation steps of unreacted azide groups. |
doi_str_mv | 10.1002/mabi.201900354 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2359395883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387240956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4504-2c7887547487fea4ee367662b58a6db42c3e438af181661d1b37bfe3d2482b0a3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EoqWwZYkssWEzg-92ljMRl0pFVOKyjRznhLp14mAnoNn1EXgAeLk-Ca6mDBIbJOv4LL7z6ej8CD2lZE0JYS8H2_o1I7QihEtxDx1TRdVK0kreP_RGH6FHOV8SQrWp2EN0xBnRmgl5jL7dXP-sg3dXtg1wc_0L27HDm3H2fVyCH7_gbYjuCtdximE3QMLbtOQLyNiWhz9Dynb2AfB5sHMf04BLwecwzb4ruh8fJnC-9w7XEALezLN1FwOM82P0oLchw5O7_wR9ev3qY_12dfb-zWm9OVs5IYlYMaeN0VJoYXQPVgBwpZVirTRWda1gjoPgxvbUUKVoR1uu2x54x4RhLbH8BL3Ye6cUvy6Q52bw2ZVd7AhxyQ3jsuKVNIYX9Pk_6GVc0li2K5Qp1yKVVIVa7ymXYs4J-mZKfrBp11DS3CbS3CbSHBIpA8_utEs7QHfA_0RQgGoPfC933P1H17zbbE__yn8DVOaaDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387240956</pqid></control><display><type>article</type><title>“Clickable” and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‐Specific Cell Attachment</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Poręba, Rafał ; los Santos Pereira, Andres ; Pola, Robert ; Jiang, Siyu ; Pop‐Georgievski, Ognen ; Sedláková, Zdeňka ; Schönherr, Holger</creator><creatorcontrib>Poręba, Rafał ; los Santos Pereira, Andres ; Pola, Robert ; Jiang, Siyu ; Pop‐Georgievski, Ognen ; Sedláková, Zdeňka ; Schönherr, Holger</creatorcontrib><description>To tailor cell–surface interactions, precise and controlled attachment of cell‐adhesive motifs is required, while any background non‐specific cell and protein adhesion has to be blocked effectively. Herein, a versatile and highly reproducible antifouling surface modification based on “clickable” groups and hierarchically structured diblock copolymer brushes for the controlled attachment of cells is reported. The polymer brush architecture combines an antifouling bottom block of poly(2‐hydroxyethyl methacrylate) poly(HEMA) and an ultrathin azide‐bearing top block, which can participate in well‐established “click” reactions including the highly selective copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction under mild conditions. This straightforward approach allows the rapid conjugation of a cell‐adhesive, alkyne‐bearing cyclic RGD peptide motif, enabling subsequent specific attachment of NIH 3T3 fibroblasts, their extensive proliferation and confluent cell sheet formation after 48 h of incubation. The generally applicable strategy presented in this report can be employed for surface functionalization with diverse alkyne‐bearing biological moieties via CuAAC or copper‐free alkyne‐azide cycloaddition protocols, making it a versatile functionalization approach and a promising tool for tissue engineering, biomaterial implant design, and other applications that require surfaces supporting highly specific cell attachment.
Antifouling diblock copolymer brushes presenting “clickable” azide moieties at the top‐block are endowed with a cell‐adhesive motif to support peptide‐specific cell attachment, leading to confluent cell sheet formation. Importantly, the presented biofunctionalization strategy is realized in a one‐step “click” reaction and does not require any further deactivation steps of unreacted azide groups.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.201900354</identifier><identifier>PMID: 32077245</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alkynes ; Alkynes - chemistry ; Alkynes - pharmacology ; Animals ; Anti-Infective Agents - chemical synthesis ; Anti-Infective Agents - pharmacology ; Antifouling ; Antifouling substances ; Attachment ; Azides - chemistry ; Azides - pharmacology ; Bearing ; Biocompatible Materials - chemical synthesis ; Biocompatible Materials - pharmacology ; Biomaterials ; Biomedical materials ; Block copolymers ; Brush plating ; Catalysis ; Cell adhesion ; Cell Proliferation - drug effects ; Cell surface ; Chemical reactions ; Click Chemistry ; Conjugation ; controlled‐cell attachment ; copolymer brushes ; Copper ; Cycloaddition ; Cycloaddition Reaction ; Fibroblasts ; Mice ; NIH 3T3 Cells ; Oligopeptides - chemistry ; Peptides ; Polyhydroxyethyl methacrylate ; Polyhydroxyethyl Methacrylate - chemistry ; Polymers ; surface biofunctionalization ; Surgical implants ; Tissue Engineering ; Tissue Scaffolds</subject><ispartof>Macromolecular bioscience, 2020-04, Vol.20 (4), p.e1900354-n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4504-2c7887547487fea4ee367662b58a6db42c3e438af181661d1b37bfe3d2482b0a3</citedby><cites>FETCH-LOGICAL-c4504-2c7887547487fea4ee367662b58a6db42c3e438af181661d1b37bfe3d2482b0a3</cites><orcidid>0000-0002-5836-5569 ; 0000-0002-5109-8023 ; 0000-0001-7938-9271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.201900354$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.201900354$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32077245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Poręba, Rafał</creatorcontrib><creatorcontrib>los Santos Pereira, Andres</creatorcontrib><creatorcontrib>Pola, Robert</creatorcontrib><creatorcontrib>Jiang, Siyu</creatorcontrib><creatorcontrib>Pop‐Georgievski, Ognen</creatorcontrib><creatorcontrib>Sedláková, Zdeňka</creatorcontrib><creatorcontrib>Schönherr, Holger</creatorcontrib><title>“Clickable” and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‐Specific Cell Attachment</title><title>Macromolecular bioscience</title><addtitle>Macromol Biosci</addtitle><description>To tailor cell–surface interactions, precise and controlled attachment of cell‐adhesive motifs is required, while any background non‐specific cell and protein adhesion has to be blocked effectively. Herein, a versatile and highly reproducible antifouling surface modification based on “clickable” groups and hierarchically structured diblock copolymer brushes for the controlled attachment of cells is reported. The polymer brush architecture combines an antifouling bottom block of poly(2‐hydroxyethyl methacrylate) poly(HEMA) and an ultrathin azide‐bearing top block, which can participate in well‐established “click” reactions including the highly selective copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction under mild conditions. This straightforward approach allows the rapid conjugation of a cell‐adhesive, alkyne‐bearing cyclic RGD peptide motif, enabling subsequent specific attachment of NIH 3T3 fibroblasts, their extensive proliferation and confluent cell sheet formation after 48 h of incubation. The generally applicable strategy presented in this report can be employed for surface functionalization with diverse alkyne‐bearing biological moieties via CuAAC or copper‐free alkyne‐azide cycloaddition protocols, making it a versatile functionalization approach and a promising tool for tissue engineering, biomaterial implant design, and other applications that require surfaces supporting highly specific cell attachment.
Antifouling diblock copolymer brushes presenting “clickable” azide moieties at the top‐block are endowed with a cell‐adhesive motif to support peptide‐specific cell attachment, leading to confluent cell sheet formation. Importantly, the presented biofunctionalization strategy is realized in a one‐step “click” reaction and does not require any further deactivation steps of unreacted azide groups.</description><subject>Alkynes</subject><subject>Alkynes - chemistry</subject><subject>Alkynes - pharmacology</subject><subject>Animals</subject><subject>Anti-Infective Agents - chemical synthesis</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Antifouling</subject><subject>Antifouling substances</subject><subject>Attachment</subject><subject>Azides - chemistry</subject><subject>Azides - pharmacology</subject><subject>Bearing</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Block copolymers</subject><subject>Brush plating</subject><subject>Catalysis</subject><subject>Cell adhesion</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell surface</subject><subject>Chemical reactions</subject><subject>Click Chemistry</subject><subject>Conjugation</subject><subject>controlled‐cell attachment</subject><subject>copolymer brushes</subject><subject>Copper</subject><subject>Cycloaddition</subject><subject>Cycloaddition Reaction</subject><subject>Fibroblasts</subject><subject>Mice</subject><subject>NIH 3T3 Cells</subject><subject>Oligopeptides - chemistry</subject><subject>Peptides</subject><subject>Polyhydroxyethyl methacrylate</subject><subject>Polyhydroxyethyl Methacrylate - chemistry</subject><subject>Polymers</subject><subject>surface biofunctionalization</subject><subject>Surgical implants</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhi0EoqWwZYkssWEzg-92ljMRl0pFVOKyjRznhLp14mAnoNn1EXgAeLk-Ca6mDBIbJOv4LL7z6ej8CD2lZE0JYS8H2_o1I7QihEtxDx1TRdVK0kreP_RGH6FHOV8SQrWp2EN0xBnRmgl5jL7dXP-sg3dXtg1wc_0L27HDm3H2fVyCH7_gbYjuCtdximE3QMLbtOQLyNiWhz9Dynb2AfB5sHMf04BLwecwzb4ruh8fJnC-9w7XEALezLN1FwOM82P0oLchw5O7_wR9ev3qY_12dfb-zWm9OVs5IYlYMaeN0VJoYXQPVgBwpZVirTRWda1gjoPgxvbUUKVoR1uu2x54x4RhLbH8BL3Ye6cUvy6Q52bw2ZVd7AhxyQ3jsuKVNIYX9Pk_6GVc0li2K5Qp1yKVVIVa7ymXYs4J-mZKfrBp11DS3CbS3CbSHBIpA8_utEs7QHfA_0RQgGoPfC933P1H17zbbE__yn8DVOaaDg</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Poręba, Rafał</creator><creator>los Santos Pereira, Andres</creator><creator>Pola, Robert</creator><creator>Jiang, Siyu</creator><creator>Pop‐Georgievski, Ognen</creator><creator>Sedláková, Zdeňka</creator><creator>Schönherr, Holger</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5836-5569</orcidid><orcidid>https://orcid.org/0000-0002-5109-8023</orcidid><orcidid>https://orcid.org/0000-0001-7938-9271</orcidid></search><sort><creationdate>202004</creationdate><title>“Clickable” and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‐Specific Cell Attachment</title><author>Poręba, Rafał ; los Santos Pereira, Andres ; Pola, Robert ; Jiang, Siyu ; Pop‐Georgievski, Ognen ; Sedláková, Zdeňka ; Schönherr, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4504-2c7887547487fea4ee367662b58a6db42c3e438af181661d1b37bfe3d2482b0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkynes</topic><topic>Alkynes - chemistry</topic><topic>Alkynes - pharmacology</topic><topic>Animals</topic><topic>Anti-Infective Agents - chemical synthesis</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Antifouling</topic><topic>Antifouling substances</topic><topic>Attachment</topic><topic>Azides - chemistry</topic><topic>Azides - pharmacology</topic><topic>Bearing</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Block copolymers</topic><topic>Brush plating</topic><topic>Catalysis</topic><topic>Cell adhesion</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell surface</topic><topic>Chemical reactions</topic><topic>Click Chemistry</topic><topic>Conjugation</topic><topic>controlled‐cell attachment</topic><topic>copolymer brushes</topic><topic>Copper</topic><topic>Cycloaddition</topic><topic>Cycloaddition Reaction</topic><topic>Fibroblasts</topic><topic>Mice</topic><topic>NIH 3T3 Cells</topic><topic>Oligopeptides - chemistry</topic><topic>Peptides</topic><topic>Polyhydroxyethyl methacrylate</topic><topic>Polyhydroxyethyl Methacrylate - chemistry</topic><topic>Polymers</topic><topic>surface biofunctionalization</topic><topic>Surgical implants</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poręba, Rafał</creatorcontrib><creatorcontrib>los Santos Pereira, Andres</creatorcontrib><creatorcontrib>Pola, Robert</creatorcontrib><creatorcontrib>Jiang, Siyu</creatorcontrib><creatorcontrib>Pop‐Georgievski, Ognen</creatorcontrib><creatorcontrib>Sedláková, Zdeňka</creatorcontrib><creatorcontrib>Schönherr, Holger</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poręba, Rafał</au><au>los Santos Pereira, Andres</au><au>Pola, Robert</au><au>Jiang, Siyu</au><au>Pop‐Georgievski, Ognen</au><au>Sedláková, Zdeňka</au><au>Schönherr, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Clickable” and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‐Specific Cell Attachment</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol Biosci</addtitle><date>2020-04</date><risdate>2020</risdate><volume>20</volume><issue>4</issue><spage>e1900354</spage><epage>n/a</epage><pages>e1900354-n/a</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>To tailor cell–surface interactions, precise and controlled attachment of cell‐adhesive motifs is required, while any background non‐specific cell and protein adhesion has to be blocked effectively. Herein, a versatile and highly reproducible antifouling surface modification based on “clickable” groups and hierarchically structured diblock copolymer brushes for the controlled attachment of cells is reported. The polymer brush architecture combines an antifouling bottom block of poly(2‐hydroxyethyl methacrylate) poly(HEMA) and an ultrathin azide‐bearing top block, which can participate in well‐established “click” reactions including the highly selective copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction under mild conditions. This straightforward approach allows the rapid conjugation of a cell‐adhesive, alkyne‐bearing cyclic RGD peptide motif, enabling subsequent specific attachment of NIH 3T3 fibroblasts, their extensive proliferation and confluent cell sheet formation after 48 h of incubation. The generally applicable strategy presented in this report can be employed for surface functionalization with diverse alkyne‐bearing biological moieties via CuAAC or copper‐free alkyne‐azide cycloaddition protocols, making it a versatile functionalization approach and a promising tool for tissue engineering, biomaterial implant design, and other applications that require surfaces supporting highly specific cell attachment.
Antifouling diblock copolymer brushes presenting “clickable” azide moieties at the top‐block are endowed with a cell‐adhesive motif to support peptide‐specific cell attachment, leading to confluent cell sheet formation. Importantly, the presented biofunctionalization strategy is realized in a one‐step “click” reaction and does not require any further deactivation steps of unreacted azide groups.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32077245</pmid><doi>10.1002/mabi.201900354</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5836-5569</orcidid><orcidid>https://orcid.org/0000-0002-5109-8023</orcidid><orcidid>https://orcid.org/0000-0001-7938-9271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2020-04, Vol.20 (4), p.e1900354-n/a |
issn | 1616-5187 1616-5195 |
language | eng |
recordid | cdi_proquest_miscellaneous_2359395883 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Alkynes Alkynes - chemistry Alkynes - pharmacology Animals Anti-Infective Agents - chemical synthesis Anti-Infective Agents - pharmacology Antifouling Antifouling substances Attachment Azides - chemistry Azides - pharmacology Bearing Biocompatible Materials - chemical synthesis Biocompatible Materials - pharmacology Biomaterials Biomedical materials Block copolymers Brush plating Catalysis Cell adhesion Cell Proliferation - drug effects Cell surface Chemical reactions Click Chemistry Conjugation controlled‐cell attachment copolymer brushes Copper Cycloaddition Cycloaddition Reaction Fibroblasts Mice NIH 3T3 Cells Oligopeptides - chemistry Peptides Polyhydroxyethyl methacrylate Polyhydroxyethyl Methacrylate - chemistry Polymers surface biofunctionalization Surgical implants Tissue Engineering Tissue Scaffolds |
title | “Clickable” and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide‐Specific Cell Attachment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T04%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CClickable%E2%80%9D%20and%20Antifouling%20Block%20Copolymer%20Brushes%20as%20a%20Versatile%20Platform%20for%20Peptide%E2%80%90Specific%20Cell%20Attachment&rft.jtitle=Macromolecular%20bioscience&rft.au=Por%C4%99ba,%20Rafa%C5%82&rft.date=2020-04&rft.volume=20&rft.issue=4&rft.spage=e1900354&rft.epage=n/a&rft.pages=e1900354-n/a&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.201900354&rft_dat=%3Cproquest_cross%3E2387240956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387240956&rft_id=info:pmid/32077245&rfr_iscdi=true |