Stability analysis of numerical boundary conditions and implicit difference approximations for hyperbolic equations

Implicit noniterative finite-difference schemes have recently been developed by several authors for multidimensional systems of nonlinear hyperbolic partial differential equations. When applied to linear model equations with periodic boundary conditions those schemes are unconditionally stable (A-st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1982-11, Vol.48 (2), p.200-222
Hauptverfasser: Beam, R.M, Warming, R.F, Yee, H.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue 2
container_start_page 200
container_title Journal of computational physics
container_volume 48
creator Beam, R.M
Warming, R.F
Yee, H.C
description Implicit noniterative finite-difference schemes have recently been developed by several authors for multidimensional systems of nonlinear hyperbolic partial differential equations. When applied to linear model equations with periodic boundary conditions those schemes are unconditionally stable (A-stable). As applied in practice the algorithms often face a severe time-step restriction. A major source of the difficulty is the treatment of the numerical boundary conditions. One conjecture has been that unconditional stability requires implicit numerical boundary conditions. An apparent counterexample was the space-time extrapolation considered by Gustafsson, Kreiss, and Sundstrom. In this paper we examine space (implicit) and space-time (explicit) extrapolation using normal mode analysis for a finite and infinite number of spatial mesh intervals. The results indicate that for unconditional stability with a finite number of spatial mesh intervals the numerical boundary conditions must be implicit.
doi_str_mv 10.1016/0021-9991(82)90047-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23592285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>002199918290047X</els_id><sourcerecordid>23592285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-df18a4c3265477b23c15fddd0ca11a2b3cc0f1b21d1c13ec784f9ba9757422aa3</originalsourceid><addsrcrecordid>eNp9kM1q3TAQhUVpoLdJ3yALrUq6cKOR5WtpEwihfxDIIglkJ8b6oSq-kiPZJX776saly65mcb4zzHyEnAP7DAz2l4xxaJRScCH5J8WY6JunN2QHTLGG97B_S3b_kHfkfSm_GGOyE3JHyv2MQxjDvFKMOK4lFJo8jcvB5WBwpENaosW8UpOiDXNIsVTS0nCYxmDCTG3w3mUXjaM4TTm9hANumE-Z_lwnl4dUUeqely04Iycex-I-_J2n5PHrl4eb783t3bcfN9e3jRGMz431IFGYlu870fcDbw103lrLDAIgH1pjmIeBgwUDrTO9FF4NqPquF5wjtqfk47a3XvW8uDLrQyjGjSNGl5aiedspzmVXQbGBJqdSsvN6yvWLvGpg-mhYH_Xpoz4tuX41rJ9q7XyrRSyo45yLBiXbmkrR8hpfbbGrP_4OLutiwtGTDdmZWdsU_r__D4_-jvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23592285</pqid></control><display><type>article</type><title>Stability analysis of numerical boundary conditions and implicit difference approximations for hyperbolic equations</title><source>Access via ScienceDirect (Elsevier)</source><source>NASA Technical Reports Server</source><creator>Beam, R.M ; Warming, R.F ; Yee, H.C</creator><creatorcontrib>Beam, R.M ; Warming, R.F ; Yee, H.C</creatorcontrib><description>Implicit noniterative finite-difference schemes have recently been developed by several authors for multidimensional systems of nonlinear hyperbolic partial differential equations. When applied to linear model equations with periodic boundary conditions those schemes are unconditionally stable (A-stable). As applied in practice the algorithms often face a severe time-step restriction. A major source of the difficulty is the treatment of the numerical boundary conditions. One conjecture has been that unconditional stability requires implicit numerical boundary conditions. An apparent counterexample was the space-time extrapolation considered by Gustafsson, Kreiss, and Sundstrom. In this paper we examine space (implicit) and space-time (explicit) extrapolation using normal mode analysis for a finite and infinite number of spatial mesh intervals. The results indicate that for unconditional stability with a finite number of spatial mesh intervals the numerical boundary conditions must be implicit.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(82)90047-X</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier Inc</publisher><subject>Numerical Analysis</subject><ispartof>Journal of computational physics, 1982-11, Vol.48 (2), p.200-222</ispartof><rights>1982</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-df18a4c3265477b23c15fddd0ca11a2b3cc0f1b21d1c13ec784f9ba9757422aa3</citedby><cites>FETCH-LOGICAL-c402t-df18a4c3265477b23c15fddd0ca11a2b3cc0f1b21d1c13ec784f9ba9757422aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9991(82)90047-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Beam, R.M</creatorcontrib><creatorcontrib>Warming, R.F</creatorcontrib><creatorcontrib>Yee, H.C</creatorcontrib><title>Stability analysis of numerical boundary conditions and implicit difference approximations for hyperbolic equations</title><title>Journal of computational physics</title><description>Implicit noniterative finite-difference schemes have recently been developed by several authors for multidimensional systems of nonlinear hyperbolic partial differential equations. When applied to linear model equations with periodic boundary conditions those schemes are unconditionally stable (A-stable). As applied in practice the algorithms often face a severe time-step restriction. A major source of the difficulty is the treatment of the numerical boundary conditions. One conjecture has been that unconditional stability requires implicit numerical boundary conditions. An apparent counterexample was the space-time extrapolation considered by Gustafsson, Kreiss, and Sundstrom. In this paper we examine space (implicit) and space-time (explicit) extrapolation using normal mode analysis for a finite and infinite number of spatial mesh intervals. The results indicate that for unconditional stability with a finite number of spatial mesh intervals the numerical boundary conditions must be implicit.</description><subject>Numerical Analysis</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNp9kM1q3TAQhUVpoLdJ3yALrUq6cKOR5WtpEwihfxDIIglkJ8b6oSq-kiPZJX776saly65mcb4zzHyEnAP7DAz2l4xxaJRScCH5J8WY6JunN2QHTLGG97B_S3b_kHfkfSm_GGOyE3JHyv2MQxjDvFKMOK4lFJo8jcvB5WBwpENaosW8UpOiDXNIsVTS0nCYxmDCTG3w3mUXjaM4TTm9hANumE-Z_lwnl4dUUeqely04Iycex-I-_J2n5PHrl4eb783t3bcfN9e3jRGMz431IFGYlu870fcDbw103lrLDAIgH1pjmIeBgwUDrTO9FF4NqPquF5wjtqfk47a3XvW8uDLrQyjGjSNGl5aiedspzmVXQbGBJqdSsvN6yvWLvGpg-mhYH_Xpoz4tuX41rJ9q7XyrRSyo45yLBiXbmkrR8hpfbbGrP_4OLutiwtGTDdmZWdsU_r__D4_-jvU</recordid><startdate>19821101</startdate><enddate>19821101</enddate><creator>Beam, R.M</creator><creator>Warming, R.F</creator><creator>Yee, H.C</creator><general>Elsevier Inc</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19821101</creationdate><title>Stability analysis of numerical boundary conditions and implicit difference approximations for hyperbolic equations</title><author>Beam, R.M ; Warming, R.F ; Yee, H.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-df18a4c3265477b23c15fddd0ca11a2b3cc0f1b21d1c13ec784f9ba9757422aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beam, R.M</creatorcontrib><creatorcontrib>Warming, R.F</creatorcontrib><creatorcontrib>Yee, H.C</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beam, R.M</au><au>Warming, R.F</au><au>Yee, H.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability analysis of numerical boundary conditions and implicit difference approximations for hyperbolic equations</atitle><jtitle>Journal of computational physics</jtitle><date>1982-11-01</date><risdate>1982</risdate><volume>48</volume><issue>2</issue><spage>200</spage><epage>222</epage><pages>200-222</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Implicit noniterative finite-difference schemes have recently been developed by several authors for multidimensional systems of nonlinear hyperbolic partial differential equations. When applied to linear model equations with periodic boundary conditions those schemes are unconditionally stable (A-stable). As applied in practice the algorithms often face a severe time-step restriction. A major source of the difficulty is the treatment of the numerical boundary conditions. One conjecture has been that unconditional stability requires implicit numerical boundary conditions. An apparent counterexample was the space-time extrapolation considered by Gustafsson, Kreiss, and Sundstrom. In this paper we examine space (implicit) and space-time (explicit) extrapolation using normal mode analysis for a finite and infinite number of spatial mesh intervals. The results indicate that for unconditional stability with a finite number of spatial mesh intervals the numerical boundary conditions must be implicit.</abstract><cop>Legacy CDMS</cop><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(82)90047-X</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1982-11, Vol.48 (2), p.200-222
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_23592285
source Access via ScienceDirect (Elsevier); NASA Technical Reports Server
subjects Numerical Analysis
title Stability analysis of numerical boundary conditions and implicit difference approximations for hyperbolic equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20analysis%20of%20numerical%20boundary%20conditions%20and%20implicit%20difference%20approximations%20for%20hyperbolic%20equations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Beam,%20R.M&rft.date=1982-11-01&rft.volume=48&rft.issue=2&rft.spage=200&rft.epage=222&rft.pages=200-222&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(82)90047-X&rft_dat=%3Cproquest_cross%3E23592285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23592285&rft_id=info:pmid/&rft_els_id=002199918290047X&rfr_iscdi=true