Molecular insights into the coding region mutations of low‐density lipoprotein receptor adaptor protein 1 (LDLRAP1) linked to familial hypercholesterolemia

Background Familial hypercholesterolemia (FH) is a lipid disorder caused by pathogenic mutations in LDLRAP1 gene. The present study has aimed to deepen our understanding about the pathogenicity predictions of FH causative genetic mutations, as well as their relationship to phenotype changes in LDLRA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of gene medicine 2020-06, Vol.22 (6), p.e3176-n/a
Hauptverfasser: Shaik, Noor A., Al‐Qahtani, Faten, Nasser, Khalidah, Jamil, Kaiser, Alrayes, Nuha Mohammad, Elango, Ramu, Awan, Zuhier Ahmed, Banaganapalli, Babajan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e3176
container_title The journal of gene medicine
container_volume 22
creator Shaik, Noor A.
Al‐Qahtani, Faten
Nasser, Khalidah
Jamil, Kaiser
Alrayes, Nuha Mohammad
Elango, Ramu
Awan, Zuhier Ahmed
Banaganapalli, Babajan
description Background Familial hypercholesterolemia (FH) is a lipid disorder caused by pathogenic mutations in LDLRAP1 gene. The present study has aimed to deepen our understanding about the pathogenicity predictions of FH causative genetic mutations, as well as their relationship to phenotype changes in LDLRAP1 protein, by utilizing multidirectional computational analysis. Methods FH linked LDLRAP1 mutations were mined from databases, and the prediction ability of several pathogenicity classifiers against these clinical variants, was assessed through different statistical measures. Furthermore, these mutations were 3D modelled in protein structures to assess their impact on protein phenotype changes. Results Our findings suggest that Polyphen‐2, when compared with SIFT, M‐CAP and CADD tools, can make better pathogenicity predictions for FH causative LDLRAP1 mutations. Through, 3D simulation and superimposition analysis of LDLRAP1 protein structures, it was found that missense mutations do not create any gross changes in the protein structure, although they could induce subtle structural changes at the level of amino acid residues. Near native molecular dynamic analysis revealed that missense mutations could induce variable degrees of fluctuation differences guiding the protein flexibility. Stability analysis showed that most missense mutations shifts the free energy equilibrium and hence they destabilize the protein. Molecular docking analysis demonstrates the molecular shifts in hydrogen and ionic bonds and Van der waals bonding properties, which further cause differences in the binding energy of LDLR‐LDLRAP1 proteins. Conclusions The diverse computational approaches used in the present study may provide a new dimension for exploring the structure–function relationship of the novel and deleterious LDLRAP1 mutations linked to FH.
doi_str_mv 10.1002/jgm.3176
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2358570770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2408327118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3496-458d8b3032043abb1eee1c2e354e2cc7bb7543d1fa2cf513ae6beba1b2e0a90d3</originalsourceid><addsrcrecordid>eNp1kc1q3DAUhUVIaH5ayBMUQTbpwql-7JG9DEmaNkxIKS10JyT5ekZT2XIkmTC7PEJeIC_XJ6ny10Ihq3tA3z06l4PQPiVHlBD2cbXojzgVsw20QytGC8aqcjNr0jRF2dQ_t9FujCtCqKjr5g3a5owIThu2g-4vvQMzORWwHaJdLFPMInmcloCNb-2wwAEW1g-4n5JKWUTsO-z8ze_buxbyTlpjZ0c_Bp_ADpk2MCYfsGrV43x5oPhwfjr_dvyVfsgLwy9ocf6nU711Vjm8XI8QzDLHiQlCHr1Vb9FWp1yEd89zD_34dPb95HMxvzr_cnI8Lwwvm1lRVnVba07yWSVXWlMAoIYBr0pgxgitRVXylnaKma6iXMFMg1ZUMyCqIS3fQ4dPvjnr9ZQDyN5GA86pAfwUJeNVXQkiBMnowX_oyk9hyOkkK0nNmaC0_mdogo8xQCfHYHsV1pIS-VCZzJXJh8oy-v7ZcNI9tH_Bl44yUDwBN9bB-lUjeXF--Wj4B72oo9s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2408327118</pqid></control><display><type>article</type><title>Molecular insights into the coding region mutations of low‐density lipoprotein receptor adaptor protein 1 (LDLRAP1) linked to familial hypercholesterolemia</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shaik, Noor A. ; Al‐Qahtani, Faten ; Nasser, Khalidah ; Jamil, Kaiser ; Alrayes, Nuha Mohammad ; Elango, Ramu ; Awan, Zuhier Ahmed ; Banaganapalli, Babajan</creator><creatorcontrib>Shaik, Noor A. ; Al‐Qahtani, Faten ; Nasser, Khalidah ; Jamil, Kaiser ; Alrayes, Nuha Mohammad ; Elango, Ramu ; Awan, Zuhier Ahmed ; Banaganapalli, Babajan</creatorcontrib><description>Background Familial hypercholesterolemia (FH) is a lipid disorder caused by pathogenic mutations in LDLRAP1 gene. The present study has aimed to deepen our understanding about the pathogenicity predictions of FH causative genetic mutations, as well as their relationship to phenotype changes in LDLRAP1 protein, by utilizing multidirectional computational analysis. Methods FH linked LDLRAP1 mutations were mined from databases, and the prediction ability of several pathogenicity classifiers against these clinical variants, was assessed through different statistical measures. Furthermore, these mutations were 3D modelled in protein structures to assess their impact on protein phenotype changes. Results Our findings suggest that Polyphen‐2, when compared with SIFT, M‐CAP and CADD tools, can make better pathogenicity predictions for FH causative LDLRAP1 mutations. Through, 3D simulation and superimposition analysis of LDLRAP1 protein structures, it was found that missense mutations do not create any gross changes in the protein structure, although they could induce subtle structural changes at the level of amino acid residues. Near native molecular dynamic analysis revealed that missense mutations could induce variable degrees of fluctuation differences guiding the protein flexibility. Stability analysis showed that most missense mutations shifts the free energy equilibrium and hence they destabilize the protein. Molecular docking analysis demonstrates the molecular shifts in hydrogen and ionic bonds and Van der waals bonding properties, which further cause differences in the binding energy of LDLR‐LDLRAP1 proteins. Conclusions The diverse computational approaches used in the present study may provide a new dimension for exploring the structure–function relationship of the novel and deleterious LDLRAP1 mutations linked to FH.</description><identifier>ISSN: 1099-498X</identifier><identifier>EISSN: 1521-2254</identifier><identifier>DOI: 10.1002/jgm.3176</identifier><identifier>PMID: 32073192</identifier><language>eng</language><publisher>England: Wiley Periodicals Inc</publisher><subject>Amino acids ; Computer applications ; docking ; familial hypercholesterolemia ; Free energy ; Gene therapy ; Hypercholesterolemia ; LDLRAP1 ; Low density lipoprotein receptors ; Missense mutation ; molecular dynamics ; Mutation ; Pathogenicity ; Phenotypes ; Predictions ; protein modelling ; Protein structure ; Proteins ; Receptor density ; Structure-function relationships</subject><ispartof>The journal of gene medicine, 2020-06, Vol.22 (6), p.e3176-n/a</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3496-458d8b3032043abb1eee1c2e354e2cc7bb7543d1fa2cf513ae6beba1b2e0a90d3</citedby><cites>FETCH-LOGICAL-c3496-458d8b3032043abb1eee1c2e354e2cc7bb7543d1fa2cf513ae6beba1b2e0a90d3</cites><orcidid>0000-0001-8089-2210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgm.3176$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgm.3176$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32073192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaik, Noor A.</creatorcontrib><creatorcontrib>Al‐Qahtani, Faten</creatorcontrib><creatorcontrib>Nasser, Khalidah</creatorcontrib><creatorcontrib>Jamil, Kaiser</creatorcontrib><creatorcontrib>Alrayes, Nuha Mohammad</creatorcontrib><creatorcontrib>Elango, Ramu</creatorcontrib><creatorcontrib>Awan, Zuhier Ahmed</creatorcontrib><creatorcontrib>Banaganapalli, Babajan</creatorcontrib><title>Molecular insights into the coding region mutations of low‐density lipoprotein receptor adaptor protein 1 (LDLRAP1) linked to familial hypercholesterolemia</title><title>The journal of gene medicine</title><addtitle>J Gene Med</addtitle><description>Background Familial hypercholesterolemia (FH) is a lipid disorder caused by pathogenic mutations in LDLRAP1 gene. The present study has aimed to deepen our understanding about the pathogenicity predictions of FH causative genetic mutations, as well as their relationship to phenotype changes in LDLRAP1 protein, by utilizing multidirectional computational analysis. Methods FH linked LDLRAP1 mutations were mined from databases, and the prediction ability of several pathogenicity classifiers against these clinical variants, was assessed through different statistical measures. Furthermore, these mutations were 3D modelled in protein structures to assess their impact on protein phenotype changes. Results Our findings suggest that Polyphen‐2, when compared with SIFT, M‐CAP and CADD tools, can make better pathogenicity predictions for FH causative LDLRAP1 mutations. Through, 3D simulation and superimposition analysis of LDLRAP1 protein structures, it was found that missense mutations do not create any gross changes in the protein structure, although they could induce subtle structural changes at the level of amino acid residues. Near native molecular dynamic analysis revealed that missense mutations could induce variable degrees of fluctuation differences guiding the protein flexibility. Stability analysis showed that most missense mutations shifts the free energy equilibrium and hence they destabilize the protein. Molecular docking analysis demonstrates the molecular shifts in hydrogen and ionic bonds and Van der waals bonding properties, which further cause differences in the binding energy of LDLR‐LDLRAP1 proteins. Conclusions The diverse computational approaches used in the present study may provide a new dimension for exploring the structure–function relationship of the novel and deleterious LDLRAP1 mutations linked to FH.</description><subject>Amino acids</subject><subject>Computer applications</subject><subject>docking</subject><subject>familial hypercholesterolemia</subject><subject>Free energy</subject><subject>Gene therapy</subject><subject>Hypercholesterolemia</subject><subject>LDLRAP1</subject><subject>Low density lipoprotein receptors</subject><subject>Missense mutation</subject><subject>molecular dynamics</subject><subject>Mutation</subject><subject>Pathogenicity</subject><subject>Phenotypes</subject><subject>Predictions</subject><subject>protein modelling</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Receptor density</subject><subject>Structure-function relationships</subject><issn>1099-498X</issn><issn>1521-2254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc1q3DAUhUVIaH5ayBMUQTbpwql-7JG9DEmaNkxIKS10JyT5ekZT2XIkmTC7PEJeIC_XJ6ny10Ihq3tA3z06l4PQPiVHlBD2cbXojzgVsw20QytGC8aqcjNr0jRF2dQ_t9FujCtCqKjr5g3a5owIThu2g-4vvQMzORWwHaJdLFPMInmcloCNb-2wwAEW1g-4n5JKWUTsO-z8ze_buxbyTlpjZ0c_Bp_ADpk2MCYfsGrV43x5oPhwfjr_dvyVfsgLwy9ocf6nU711Vjm8XI8QzDLHiQlCHr1Vb9FWp1yEd89zD_34dPb95HMxvzr_cnI8Lwwvm1lRVnVba07yWSVXWlMAoIYBr0pgxgitRVXylnaKma6iXMFMg1ZUMyCqIS3fQ4dPvjnr9ZQDyN5GA86pAfwUJeNVXQkiBMnowX_oyk9hyOkkK0nNmaC0_mdogo8xQCfHYHsV1pIS-VCZzJXJh8oy-v7ZcNI9tH_Bl44yUDwBN9bB-lUjeXF--Wj4B72oo9s</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Shaik, Noor A.</creator><creator>Al‐Qahtani, Faten</creator><creator>Nasser, Khalidah</creator><creator>Jamil, Kaiser</creator><creator>Alrayes, Nuha Mohammad</creator><creator>Elango, Ramu</creator><creator>Awan, Zuhier Ahmed</creator><creator>Banaganapalli, Babajan</creator><general>Wiley Periodicals Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8089-2210</orcidid></search><sort><creationdate>202006</creationdate><title>Molecular insights into the coding region mutations of low‐density lipoprotein receptor adaptor protein 1 (LDLRAP1) linked to familial hypercholesterolemia</title><author>Shaik, Noor A. ; Al‐Qahtani, Faten ; Nasser, Khalidah ; Jamil, Kaiser ; Alrayes, Nuha Mohammad ; Elango, Ramu ; Awan, Zuhier Ahmed ; Banaganapalli, Babajan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3496-458d8b3032043abb1eee1c2e354e2cc7bb7543d1fa2cf513ae6beba1b2e0a90d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Computer applications</topic><topic>docking</topic><topic>familial hypercholesterolemia</topic><topic>Free energy</topic><topic>Gene therapy</topic><topic>Hypercholesterolemia</topic><topic>LDLRAP1</topic><topic>Low density lipoprotein receptors</topic><topic>Missense mutation</topic><topic>molecular dynamics</topic><topic>Mutation</topic><topic>Pathogenicity</topic><topic>Phenotypes</topic><topic>Predictions</topic><topic>protein modelling</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Receptor density</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaik, Noor A.</creatorcontrib><creatorcontrib>Al‐Qahtani, Faten</creatorcontrib><creatorcontrib>Nasser, Khalidah</creatorcontrib><creatorcontrib>Jamil, Kaiser</creatorcontrib><creatorcontrib>Alrayes, Nuha Mohammad</creatorcontrib><creatorcontrib>Elango, Ramu</creatorcontrib><creatorcontrib>Awan, Zuhier Ahmed</creatorcontrib><creatorcontrib>Banaganapalli, Babajan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of gene medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaik, Noor A.</au><au>Al‐Qahtani, Faten</au><au>Nasser, Khalidah</au><au>Jamil, Kaiser</au><au>Alrayes, Nuha Mohammad</au><au>Elango, Ramu</au><au>Awan, Zuhier Ahmed</au><au>Banaganapalli, Babajan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular insights into the coding region mutations of low‐density lipoprotein receptor adaptor protein 1 (LDLRAP1) linked to familial hypercholesterolemia</atitle><jtitle>The journal of gene medicine</jtitle><addtitle>J Gene Med</addtitle><date>2020-06</date><risdate>2020</risdate><volume>22</volume><issue>6</issue><spage>e3176</spage><epage>n/a</epage><pages>e3176-n/a</pages><issn>1099-498X</issn><eissn>1521-2254</eissn><abstract>Background Familial hypercholesterolemia (FH) is a lipid disorder caused by pathogenic mutations in LDLRAP1 gene. The present study has aimed to deepen our understanding about the pathogenicity predictions of FH causative genetic mutations, as well as their relationship to phenotype changes in LDLRAP1 protein, by utilizing multidirectional computational analysis. Methods FH linked LDLRAP1 mutations were mined from databases, and the prediction ability of several pathogenicity classifiers against these clinical variants, was assessed through different statistical measures. Furthermore, these mutations were 3D modelled in protein structures to assess their impact on protein phenotype changes. Results Our findings suggest that Polyphen‐2, when compared with SIFT, M‐CAP and CADD tools, can make better pathogenicity predictions for FH causative LDLRAP1 mutations. Through, 3D simulation and superimposition analysis of LDLRAP1 protein structures, it was found that missense mutations do not create any gross changes in the protein structure, although they could induce subtle structural changes at the level of amino acid residues. Near native molecular dynamic analysis revealed that missense mutations could induce variable degrees of fluctuation differences guiding the protein flexibility. Stability analysis showed that most missense mutations shifts the free energy equilibrium and hence they destabilize the protein. Molecular docking analysis demonstrates the molecular shifts in hydrogen and ionic bonds and Van der waals bonding properties, which further cause differences in the binding energy of LDLR‐LDLRAP1 proteins. Conclusions The diverse computational approaches used in the present study may provide a new dimension for exploring the structure–function relationship of the novel and deleterious LDLRAP1 mutations linked to FH.</abstract><cop>England</cop><pub>Wiley Periodicals Inc</pub><pmid>32073192</pmid><doi>10.1002/jgm.3176</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8089-2210</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1099-498X
ispartof The journal of gene medicine, 2020-06, Vol.22 (6), p.e3176-n/a
issn 1099-498X
1521-2254
language eng
recordid cdi_proquest_miscellaneous_2358570770
source Wiley Online Library Journals Frontfile Complete
subjects Amino acids
Computer applications
docking
familial hypercholesterolemia
Free energy
Gene therapy
Hypercholesterolemia
LDLRAP1
Low density lipoprotein receptors
Missense mutation
molecular dynamics
Mutation
Pathogenicity
Phenotypes
Predictions
protein modelling
Protein structure
Proteins
Receptor density
Structure-function relationships
title Molecular insights into the coding region mutations of low‐density lipoprotein receptor adaptor protein 1 (LDLRAP1) linked to familial hypercholesterolemia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20insights%20into%20the%20coding%20region%20mutations%20of%20low%E2%80%90density%20lipoprotein%20receptor%20adaptor%20protein%201%20(LDLRAP1)%20linked%20to%20familial%20hypercholesterolemia&rft.jtitle=The%20journal%20of%20gene%20medicine&rft.au=Shaik,%20Noor%20A.&rft.date=2020-06&rft.volume=22&rft.issue=6&rft.spage=e3176&rft.epage=n/a&rft.pages=e3176-n/a&rft.issn=1099-498X&rft.eissn=1521-2254&rft_id=info:doi/10.1002/jgm.3176&rft_dat=%3Cproquest_cross%3E2408327118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2408327118&rft_id=info:pmid/32073192&rfr_iscdi=true