Local lattice distortions and dynamics in extremely overdoped superconducting YSr₂Cu2.75Mo0.25O7.54

A common characteristic of many “overdoped” cuprates prepared with high-pressure oxygen is Tc values ≥ 50 K that often exceed that of optimally doped parent compounds, despite O stoichiometries that place the materials at the edge or outside of the conventional boundary between superconducting and n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-03, Vol.117 (9), p.4559-4564
Hauptverfasser: Conradson, Steven D., Geballe, Theodore H., Gauzzi, Andrea, Karppinen, Maarit, Jin, Changqing, Baldinozzi, Gianguido, Li, Wenmin, Cao, Lipeng, Gilioli, Edmondo, Jiang, Jack M., Latimer, Matthew, Mueller, Oliver, Nasretdinova, Venera
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A common characteristic of many “overdoped” cuprates prepared with high-pressure oxygen is Tc values ≥ 50 K that often exceed that of optimally doped parent compounds, despite O stoichiometries that place the materials at the edge or outside of the conventional boundary between superconducting and normal Fermi liquid states. X-ray absorption fine-structure (XAFS) measurements at 52 K on samples of high-pressure oxygen (HPO) YSr₂Cu2.75Mo0.25O7.54, Tc = 84 K show that the Mo is in the (VI) valence in an unusually undistorted octahedral geometry with predominantly Mo neighbors that is consistent with its assigned substitution for Cu in the chain sites of the structure. Perturbations of the Cu environments are minimal, although the Cu X-ray absorption near-edge structure (XANES) differs from that in other cuprates. The primary deviation from the crystal structure is therefore nanophase separation into Mo- and Cu-enriched domains. There are, however, indications that the dynamical attributes of the structure are altered relative to YBa₂Cu₃O₇, including a shift of the Cu-apical O two-site distribution from the chain to the plane Cu sites. Another effect that would influence Tc is the possibility of multiple bands at the Fermi surface caused by the presence of the second phase and the lowering of the Fermi level.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1918704117