Some duality results for a class of multivariate semi-markov processes

The duality results well known for classical random walk and generalized by Janssen (1976) for (J-X) processes (or sequences of random variables defined on a finite Markov chain) are extended to a class of multivariate semi-Markov processes. Just as in the classical case, these duality results lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 1982-03, Vol.19 (1), p.90-98
Hauptverfasser: Janssen, J., Reinhard, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1
container_start_page 90
container_title Journal of applied probability
container_volume 19
creator Janssen, J.
Reinhard, J. M.
description The duality results well known for classical random walk and generalized by Janssen (1976) for (J-X) processes (or sequences of random variables defined on a finite Markov chain) are extended to a class of multivariate semi-Markov processes. Just as in the classical case, these duality results lead to connections between some models of risk theory and queueing theory.
doi_str_mv 10.2307/3213919
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_23578584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_2307_3213919</cupid><jstor_id>3213919</jstor_id><sourcerecordid>3213919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-cd800f47f0d239579198d693a4d08185b1720c38ce24a5e1dbef161e06a502bc3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7iX8hBFA_VSdI07VEWV4UFD-q5pOlUWtvNmmkX9t8b2b0JXmZg-Hjz3mPsUsCdVGDulRSqEMURm4nU6CQDI4_ZDECKpIjzlJ0RdQAi1YWZseWbH5DXk-3bcccD0tSPxBsfuOWut0TcN3yIx3ZrQ2tH5IRDmww2fPkt3wTvkAjpnJ00tie8OOw5-1g-vi-ek9Xr08viYZU4mRZj4uocoElNA7VUhTbRZ15nhbJpDbnIdSWMBKdyhzK1GkVdYSMygZBZDbJyas6u97rx8_eENJZDSw773q7RT1RKpU2u8zSCN3vQBU8UsCk3oY2ud6WA8ren8tBTJK_2ZEejD_9gtwdBO1ShrT-x7PwU1jHtH_YHvTtx7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23578584</pqid></control><display><type>article</type><title>Some duality results for a class of multivariate semi-markov processes</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Janssen, J. ; Reinhard, J. M.</creator><creatorcontrib>Janssen, J. ; Reinhard, J. M.</creatorcontrib><description>The duality results well known for classical random walk and generalized by Janssen (1976) for (J-X) processes (or sequences of random variables defined on a finite Markov chain) are extended to a class of multivariate semi-Markov processes. Just as in the classical case, these duality results lead to connections between some models of risk theory and queueing theory.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.2307/3213919</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Markov chains ; Mathematical duality ; Mathematical functions ; Mathematical vectors ; Mathematics ; Product labeling ; Queueing theory ; Random variables ; Random walk ; Research Paper</subject><ispartof>Journal of applied probability, 1982-03, Vol.19 (1), p.90-98</ispartof><rights>Copyright © Applied Probability Trust 1982</rights><rights>Copyright 1982 Applied Probability Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-cd800f47f0d239579198d693a4d08185b1720c38ce24a5e1dbef161e06a502bc3</citedby><cites>FETCH-LOGICAL-c249t-cd800f47f0d239579198d693a4d08185b1720c38ce24a5e1dbef161e06a502bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3213919$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3213919$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Janssen, J.</creatorcontrib><creatorcontrib>Reinhard, J. M.</creatorcontrib><title>Some duality results for a class of multivariate semi-markov processes</title><title>Journal of applied probability</title><addtitle>Journal of Applied Probability</addtitle><description>The duality results well known for classical random walk and generalized by Janssen (1976) for (J-X) processes (or sequences of random variables defined on a finite Markov chain) are extended to a class of multivariate semi-Markov processes. Just as in the classical case, these duality results lead to connections between some models of risk theory and queueing theory.</description><subject>Markov chains</subject><subject>Mathematical duality</subject><subject>Mathematical functions</subject><subject>Mathematical vectors</subject><subject>Mathematics</subject><subject>Product labeling</subject><subject>Queueing theory</subject><subject>Random variables</subject><subject>Random walk</subject><subject>Research Paper</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7iX8hBFA_VSdI07VEWV4UFD-q5pOlUWtvNmmkX9t8b2b0JXmZg-Hjz3mPsUsCdVGDulRSqEMURm4nU6CQDI4_ZDECKpIjzlJ0RdQAi1YWZseWbH5DXk-3bcccD0tSPxBsfuOWut0TcN3yIx3ZrQ2tH5IRDmww2fPkt3wTvkAjpnJ00tie8OOw5-1g-vi-ek9Xr08viYZU4mRZj4uocoElNA7VUhTbRZ15nhbJpDbnIdSWMBKdyhzK1GkVdYSMygZBZDbJyas6u97rx8_eENJZDSw773q7RT1RKpU2u8zSCN3vQBU8UsCk3oY2ud6WA8ren8tBTJK_2ZEejD_9gtwdBO1ShrT-x7PwU1jHtH_YHvTtx7w</recordid><startdate>19820301</startdate><enddate>19820301</enddate><creator>Janssen, J.</creator><creator>Reinhard, J. M.</creator><general>Cambridge University Press</general><general>Applied Probability Trust</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19820301</creationdate><title>Some duality results for a class of multivariate semi-markov processes</title><author>Janssen, J. ; Reinhard, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-cd800f47f0d239579198d693a4d08185b1720c38ce24a5e1dbef161e06a502bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Markov chains</topic><topic>Mathematical duality</topic><topic>Mathematical functions</topic><topic>Mathematical vectors</topic><topic>Mathematics</topic><topic>Product labeling</topic><topic>Queueing theory</topic><topic>Random variables</topic><topic>Random walk</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janssen, J.</creatorcontrib><creatorcontrib>Reinhard, J. M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janssen, J.</au><au>Reinhard, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some duality results for a class of multivariate semi-markov processes</atitle><jtitle>Journal of applied probability</jtitle><addtitle>Journal of Applied Probability</addtitle><date>1982-03-01</date><risdate>1982</risdate><volume>19</volume><issue>1</issue><spage>90</spage><epage>98</epage><pages>90-98</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>The duality results well known for classical random walk and generalized by Janssen (1976) for (J-X) processes (or sequences of random variables defined on a finite Markov chain) are extended to a class of multivariate semi-Markov processes. Just as in the classical case, these duality results lead to connections between some models of risk theory and queueing theory.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.2307/3213919</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 1982-03, Vol.19 (1), p.90-98
issn 0021-9002
1475-6072
language eng
recordid cdi_proquest_miscellaneous_23578584
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Markov chains
Mathematical duality
Mathematical functions
Mathematical vectors
Mathematics
Product labeling
Queueing theory
Random variables
Random walk
Research Paper
title Some duality results for a class of multivariate semi-markov processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20duality%20results%20for%20a%20class%20of%20multivariate%20semi-markov%20processes&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Janssen,%20J.&rft.date=1982-03-01&rft.volume=19&rft.issue=1&rft.spage=90&rft.epage=98&rft.pages=90-98&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.2307/3213919&rft_dat=%3Cjstor_proqu%3E3213919%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23578584&rft_id=info:pmid/&rft_cupid=10_2307_3213919&rft_jstor_id=3213919&rfr_iscdi=true