Automatic 3D landmarking model using patch‐based deep neural networks for CT image of oral and maxillofacial surgery

Background Manual landmarking is a time consuming and highly professional work. Although some algorithm‐based landmarking methods have been proposed, they lack flexibility and may be susceptible to data diversity. Methods The CT images from 66 patients who underwent oral and maxillofacial surgery (O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of medical robotics + computer assisted surgery 2020-06, Vol.16 (3), p.e2093-n/a
Hauptverfasser: Ma, Qingchuan, Kobayashi, Etsuko, Fan, Bowen, Nakagawa, Keiichi, Sakuma, Ichiro, Masamune, Ken, Suenaga, Hideyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e2093
container_title The international journal of medical robotics + computer assisted surgery
container_volume 16
creator Ma, Qingchuan
Kobayashi, Etsuko
Fan, Bowen
Nakagawa, Keiichi
Sakuma, Ichiro
Masamune, Ken
Suenaga, Hideyuki
description Background Manual landmarking is a time consuming and highly professional work. Although some algorithm‐based landmarking methods have been proposed, they lack flexibility and may be susceptible to data diversity. Methods The CT images from 66 patients who underwent oral and maxillofacial surgery (OMS) were landmarked manually in MIMICS. Then the CT slices were exported as images for recreating the 3D volume. The coordinate data of landmarks were further processed in Matlab using a principal component analysis (PCA) method. A patch‐based deep neural network model with a three‐layer convolutional neural network (CNN) was trained to obtain landmarks from CT images. Results The evaluating experiment showed that this CNN model could automatically finish landmarking in an average processing time of 37.871 seconds with an average accuracy of 5.785 mm. Conclusion This study shows a promising potential to relieve the workload of the surgeon and reduces the dependence on human experience for OMS landmarking.
doi_str_mv 10.1002/rcs.2093
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2356595823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2399079823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4153-c68f31840c34b5045110c7eef90b1e9a2fe8126e9a49d7953bdc3542b7107b493</originalsourceid><addsrcrecordid>eNp1kd9KwzAUh4MoTqfgE0jAG286kyZpm8sx_8JA0AnelTQ9nd3aZSatc3c-gs_ok5i5uQvBq3NIPj7OOT-ETijpUULCC6tdLySS7aADyuMkEDJ63t32gnbQoXMTQrjgEd9HHRaSSMQ0OUBv_bYxtWpKjdklrtQsr5WdlrMxrk0OFW7dqp-rRr98fXxmykGOc4A5nkFrVeVLszB26nBhLB6McFmrMWBTYLP69Tpcq_eyqkyhdOlfXGvHYJdHaK9QlYPjTe2ip-ur0eA2GN7f3A36w0BzKligo6RgNOFEM54JPz6lRMcAhSQZBanCAhIaRr7jMo-lYFmumeBhFlMSZ1yyLjpfe-fWvLbgmrQunYbKLwqmdWnIROQPlITMo2d_0Ilp7cxP5ykpSSzX1EaorXHOQpHOrd_ZLlNK0lUWqc8iXWXh0dONsM1qyLfg7_E9EKyBRVnB8l9R-jB4_BF-A8Btkzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399079823</pqid></control><display><type>article</type><title>Automatic 3D landmarking model using patch‐based deep neural networks for CT image of oral and maxillofacial surgery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ma, Qingchuan ; Kobayashi, Etsuko ; Fan, Bowen ; Nakagawa, Keiichi ; Sakuma, Ichiro ; Masamune, Ken ; Suenaga, Hideyuki</creator><creatorcontrib>Ma, Qingchuan ; Kobayashi, Etsuko ; Fan, Bowen ; Nakagawa, Keiichi ; Sakuma, Ichiro ; Masamune, Ken ; Suenaga, Hideyuki</creatorcontrib><description>Background Manual landmarking is a time consuming and highly professional work. Although some algorithm‐based landmarking methods have been proposed, they lack flexibility and may be susceptible to data diversity. Methods The CT images from 66 patients who underwent oral and maxillofacial surgery (OMS) were landmarked manually in MIMICS. Then the CT slices were exported as images for recreating the 3D volume. The coordinate data of landmarks were further processed in Matlab using a principal component analysis (PCA) method. A patch‐based deep neural network model with a three‐layer convolutional neural network (CNN) was trained to obtain landmarks from CT images. Results The evaluating experiment showed that this CNN model could automatically finish landmarking in an average processing time of 37.871 seconds with an average accuracy of 5.785 mm. Conclusion This study shows a promising potential to relieve the workload of the surgeon and reduces the dependence on human experience for OMS landmarking.</description><identifier>ISSN: 1478-5951</identifier><identifier>EISSN: 1478-596X</identifier><identifier>DOI: 10.1002/rcs.2093</identifier><identifier>PMID: 32065718</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>3D cephalometry ; Algorithms ; Artificial neural networks ; automatic landmarking ; Computed tomography ; convolutional neural network ; machine learning ; Maxillofacial surgery ; Medical imaging ; Neural networks ; oral and maxillofacial surgery ; Principal components analysis ; Surgery ; Three dimensional models ; Workload</subject><ispartof>The international journal of medical robotics + computer assisted surgery, 2020-06, Vol.16 (3), p.e2093-n/a</ispartof><rights>2020 John Wiley &amp; Sons, Ltd</rights><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4153-c68f31840c34b5045110c7eef90b1e9a2fe8126e9a49d7953bdc3542b7107b493</citedby><cites>FETCH-LOGICAL-c4153-c68f31840c34b5045110c7eef90b1e9a2fe8126e9a49d7953bdc3542b7107b493</cites><orcidid>0000-0001-8061-6320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frcs.2093$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frcs.2093$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32065718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Qingchuan</creatorcontrib><creatorcontrib>Kobayashi, Etsuko</creatorcontrib><creatorcontrib>Fan, Bowen</creatorcontrib><creatorcontrib>Nakagawa, Keiichi</creatorcontrib><creatorcontrib>Sakuma, Ichiro</creatorcontrib><creatorcontrib>Masamune, Ken</creatorcontrib><creatorcontrib>Suenaga, Hideyuki</creatorcontrib><title>Automatic 3D landmarking model using patch‐based deep neural networks for CT image of oral and maxillofacial surgery</title><title>The international journal of medical robotics + computer assisted surgery</title><addtitle>Int J Med Robot</addtitle><description>Background Manual landmarking is a time consuming and highly professional work. Although some algorithm‐based landmarking methods have been proposed, they lack flexibility and may be susceptible to data diversity. Methods The CT images from 66 patients who underwent oral and maxillofacial surgery (OMS) were landmarked manually in MIMICS. Then the CT slices were exported as images for recreating the 3D volume. The coordinate data of landmarks were further processed in Matlab using a principal component analysis (PCA) method. A patch‐based deep neural network model with a three‐layer convolutional neural network (CNN) was trained to obtain landmarks from CT images. Results The evaluating experiment showed that this CNN model could automatically finish landmarking in an average processing time of 37.871 seconds with an average accuracy of 5.785 mm. Conclusion This study shows a promising potential to relieve the workload of the surgeon and reduces the dependence on human experience for OMS landmarking.</description><subject>3D cephalometry</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>automatic landmarking</subject><subject>Computed tomography</subject><subject>convolutional neural network</subject><subject>machine learning</subject><subject>Maxillofacial surgery</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>oral and maxillofacial surgery</subject><subject>Principal components analysis</subject><subject>Surgery</subject><subject>Three dimensional models</subject><subject>Workload</subject><issn>1478-5951</issn><issn>1478-596X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kd9KwzAUh4MoTqfgE0jAG286kyZpm8sx_8JA0AnelTQ9nd3aZSatc3c-gs_ok5i5uQvBq3NIPj7OOT-ETijpUULCC6tdLySS7aADyuMkEDJ63t32gnbQoXMTQrjgEd9HHRaSSMQ0OUBv_bYxtWpKjdklrtQsr5WdlrMxrk0OFW7dqp-rRr98fXxmykGOc4A5nkFrVeVLszB26nBhLB6McFmrMWBTYLP69Tpcq_eyqkyhdOlfXGvHYJdHaK9QlYPjTe2ip-ur0eA2GN7f3A36w0BzKligo6RgNOFEM54JPz6lRMcAhSQZBanCAhIaRr7jMo-lYFmumeBhFlMSZ1yyLjpfe-fWvLbgmrQunYbKLwqmdWnIROQPlITMo2d_0Ilp7cxP5ykpSSzX1EaorXHOQpHOrd_ZLlNK0lUWqc8iXWXh0dONsM1qyLfg7_E9EKyBRVnB8l9R-jB4_BF-A8Btkzg</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Ma, Qingchuan</creator><creator>Kobayashi, Etsuko</creator><creator>Fan, Bowen</creator><creator>Nakagawa, Keiichi</creator><creator>Sakuma, Ichiro</creator><creator>Masamune, Ken</creator><creator>Suenaga, Hideyuki</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8061-6320</orcidid></search><sort><creationdate>202006</creationdate><title>Automatic 3D landmarking model using patch‐based deep neural networks for CT image of oral and maxillofacial surgery</title><author>Ma, Qingchuan ; Kobayashi, Etsuko ; Fan, Bowen ; Nakagawa, Keiichi ; Sakuma, Ichiro ; Masamune, Ken ; Suenaga, Hideyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4153-c68f31840c34b5045110c7eef90b1e9a2fe8126e9a49d7953bdc3542b7107b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D cephalometry</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>automatic landmarking</topic><topic>Computed tomography</topic><topic>convolutional neural network</topic><topic>machine learning</topic><topic>Maxillofacial surgery</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>oral and maxillofacial surgery</topic><topic>Principal components analysis</topic><topic>Surgery</topic><topic>Three dimensional models</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Qingchuan</creatorcontrib><creatorcontrib>Kobayashi, Etsuko</creatorcontrib><creatorcontrib>Fan, Bowen</creatorcontrib><creatorcontrib>Nakagawa, Keiichi</creatorcontrib><creatorcontrib>Sakuma, Ichiro</creatorcontrib><creatorcontrib>Masamune, Ken</creatorcontrib><creatorcontrib>Suenaga, Hideyuki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>The international journal of medical robotics + computer assisted surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Qingchuan</au><au>Kobayashi, Etsuko</au><au>Fan, Bowen</au><au>Nakagawa, Keiichi</au><au>Sakuma, Ichiro</au><au>Masamune, Ken</au><au>Suenaga, Hideyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic 3D landmarking model using patch‐based deep neural networks for CT image of oral and maxillofacial surgery</atitle><jtitle>The international journal of medical robotics + computer assisted surgery</jtitle><addtitle>Int J Med Robot</addtitle><date>2020-06</date><risdate>2020</risdate><volume>16</volume><issue>3</issue><spage>e2093</spage><epage>n/a</epage><pages>e2093-n/a</pages><issn>1478-5951</issn><eissn>1478-596X</eissn><abstract>Background Manual landmarking is a time consuming and highly professional work. Although some algorithm‐based landmarking methods have been proposed, they lack flexibility and may be susceptible to data diversity. Methods The CT images from 66 patients who underwent oral and maxillofacial surgery (OMS) were landmarked manually in MIMICS. Then the CT slices were exported as images for recreating the 3D volume. The coordinate data of landmarks were further processed in Matlab using a principal component analysis (PCA) method. A patch‐based deep neural network model with a three‐layer convolutional neural network (CNN) was trained to obtain landmarks from CT images. Results The evaluating experiment showed that this CNN model could automatically finish landmarking in an average processing time of 37.871 seconds with an average accuracy of 5.785 mm. Conclusion This study shows a promising potential to relieve the workload of the surgeon and reduces the dependence on human experience for OMS landmarking.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32065718</pmid><doi>10.1002/rcs.2093</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8061-6320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1478-5951
ispartof The international journal of medical robotics + computer assisted surgery, 2020-06, Vol.16 (3), p.e2093-n/a
issn 1478-5951
1478-596X
language eng
recordid cdi_proquest_miscellaneous_2356595823
source Wiley Online Library Journals Frontfile Complete
subjects 3D cephalometry
Algorithms
Artificial neural networks
automatic landmarking
Computed tomography
convolutional neural network
machine learning
Maxillofacial surgery
Medical imaging
Neural networks
oral and maxillofacial surgery
Principal components analysis
Surgery
Three dimensional models
Workload
title Automatic 3D landmarking model using patch‐based deep neural networks for CT image of oral and maxillofacial surgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%203D%20landmarking%20model%20using%20patch%E2%80%90based%20deep%20neural%20networks%20for%20CT%20image%20of%20oral%20and%20maxillofacial%20surgery&rft.jtitle=The%20international%20journal%20of%20medical%20robotics%20+%20computer%20assisted%20surgery&rft.au=Ma,%20Qingchuan&rft.date=2020-06&rft.volume=16&rft.issue=3&rft.spage=e2093&rft.epage=n/a&rft.pages=e2093-n/a&rft.issn=1478-5951&rft.eissn=1478-596X&rft_id=info:doi/10.1002/rcs.2093&rft_dat=%3Cproquest_cross%3E2399079823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399079823&rft_id=info:pmid/32065718&rfr_iscdi=true