Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles

The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-02, Vol.152 (6), p.064710-064710
Hauptverfasser: Hoeing, Dominik, Schulz, Florian, Mueller, Niclas S., Reich, Stephanie, Lange, Holger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 064710
container_issue 6
container_start_page 064710
container_title The Journal of chemical physics
container_volume 152
creator Hoeing, Dominik
Schulz, Florian
Mueller, Niclas S.
Reich, Stephanie
Lange, Holger
description The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot electrons compared to the generation via bright plasmons. We performed transient-absorption spectroscopy on gold nanoparticle films to assess the initial electronic temperature before thermalization. We observe a significant increase in the electron–phonon coupling time when dark plasmon modes are excited in these films. The results indicate an efficient energy absorption due to the suppressed radiative decay of dark plasmon modes and a subsequent energy transformation into hot electrons.
doi_str_mv 10.1063/1.5131696
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2356591609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356591609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-b2ba36807f08274eb2fd7d89466d6f5a43c2e953fd597f5b04d8e1110773d4493</originalsourceid><addsrcrecordid>eNp90EFrFTEQB_BQlPa1eugXkIAXFbZOkt1kc5RqVSh4qUdZsptJTZvdbJOs0G_vvr5nCwqeZg4__jP8CTllcMZAivfsrGGCSS0PyIZBqyslNTwjGwDOKi1BHpHjnG8AgCleH5IjwUEyzvWG_Pho0i2dg8ljnOgYLWbqYqLonB88ToX-jIViwKGkFVzjhMkUv65-5UsoPph7TJlGR69jsHQyU5xNKn4ImF-Q586EjC_384R8v_h0df6luvz2-ev5h8tqqFlbqp73RsgWlIOWqxp77qyyra6ltNI1phYDR90IZxutXNNDbVtkjIFSwta1FifkzS53TvFuwVy60ecBQzATxiV3XDSy0UzClr7-i97EJU3rd1sllNKyEat6u1NDijkndN2c_GjSfceg23besW7f-Wpf7ROXfkT7KP-UvIJ3O5AHXx7KezS_YnpK6mbr_of_Pf0bwsmXIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353779653</pqid></control><display><type>article</type><title>Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hoeing, Dominik ; Schulz, Florian ; Mueller, Niclas S. ; Reich, Stephanie ; Lange, Holger</creator><creatorcontrib>Hoeing, Dominik ; Schulz, Florian ; Mueller, Niclas S. ; Reich, Stephanie ; Lange, Holger</creatorcontrib><description>The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot electrons compared to the generation via bright plasmons. We performed transient-absorption spectroscopy on gold nanoparticle films to assess the initial electronic temperature before thermalization. We observe a significant increase in the electron–phonon coupling time when dark plasmon modes are excited in these films. The results indicate an efficient energy absorption due to the suppressed radiative decay of dark plasmon modes and a subsequent energy transformation into hot electrons.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5131696</identifier><identifier>PMID: 32061229</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coupled modes ; Dipoles ; Energy absorption ; Energy conversion ; Excitation ; Gold ; Hot electrons ; Landau damping ; Multilayers ; Nanoparticles ; Physics ; Plasmons ; Thermalization (energy absorption)</subject><ispartof>The Journal of chemical physics, 2020-02, Vol.152 (6), p.064710-064710</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-b2ba36807f08274eb2fd7d89466d6f5a43c2e953fd597f5b04d8e1110773d4493</citedby><cites>FETCH-LOGICAL-c418t-b2ba36807f08274eb2fd7d89466d6f5a43c2e953fd597f5b04d8e1110773d4493</cites><orcidid>0000-0002-4236-2806 ; 0000-0002-3965-0903 ; 0000-0003-4440-3680 ; 0000-0002-8688-1974 ; 0000-0002-2391-0256 ; 0000000239650903 ; 0000000286881974 ; 0000000344403680 ; 0000000242362806 ; 0000000223910256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5131696$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32061229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoeing, Dominik</creatorcontrib><creatorcontrib>Schulz, Florian</creatorcontrib><creatorcontrib>Mueller, Niclas S.</creatorcontrib><creatorcontrib>Reich, Stephanie</creatorcontrib><creatorcontrib>Lange, Holger</creatorcontrib><title>Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot electrons compared to the generation via bright plasmons. We performed transient-absorption spectroscopy on gold nanoparticle films to assess the initial electronic temperature before thermalization. We observe a significant increase in the electron–phonon coupling time when dark plasmon modes are excited in these films. The results indicate an efficient energy absorption due to the suppressed radiative decay of dark plasmon modes and a subsequent energy transformation into hot electrons.</description><subject>Coupled modes</subject><subject>Dipoles</subject><subject>Energy absorption</subject><subject>Energy conversion</subject><subject>Excitation</subject><subject>Gold</subject><subject>Hot electrons</subject><subject>Landau damping</subject><subject>Multilayers</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Plasmons</subject><subject>Thermalization (energy absorption)</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EFrFTEQB_BQlPa1eugXkIAXFbZOkt1kc5RqVSh4qUdZsptJTZvdbJOs0G_vvr5nCwqeZg4__jP8CTllcMZAivfsrGGCSS0PyIZBqyslNTwjGwDOKi1BHpHjnG8AgCleH5IjwUEyzvWG_Pho0i2dg8ljnOgYLWbqYqLonB88ToX-jIViwKGkFVzjhMkUv65-5UsoPph7TJlGR69jsHQyU5xNKn4ImF-Q586EjC_384R8v_h0df6luvz2-ev5h8tqqFlbqp73RsgWlIOWqxp77qyyra6ltNI1phYDR90IZxutXNNDbVtkjIFSwta1FifkzS53TvFuwVy60ecBQzATxiV3XDSy0UzClr7-i97EJU3rd1sllNKyEat6u1NDijkndN2c_GjSfceg23besW7f-Wpf7ROXfkT7KP-UvIJ3O5AHXx7KezS_YnpK6mbr_of_Pf0bwsmXIQ</recordid><startdate>20200214</startdate><enddate>20200214</enddate><creator>Hoeing, Dominik</creator><creator>Schulz, Florian</creator><creator>Mueller, Niclas S.</creator><creator>Reich, Stephanie</creator><creator>Lange, Holger</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4236-2806</orcidid><orcidid>https://orcid.org/0000-0002-3965-0903</orcidid><orcidid>https://orcid.org/0000-0003-4440-3680</orcidid><orcidid>https://orcid.org/0000-0002-8688-1974</orcidid><orcidid>https://orcid.org/0000-0002-2391-0256</orcidid><orcidid>https://orcid.org/0000000239650903</orcidid><orcidid>https://orcid.org/0000000286881974</orcidid><orcidid>https://orcid.org/0000000344403680</orcidid><orcidid>https://orcid.org/0000000242362806</orcidid><orcidid>https://orcid.org/0000000223910256</orcidid></search><sort><creationdate>20200214</creationdate><title>Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles</title><author>Hoeing, Dominik ; Schulz, Florian ; Mueller, Niclas S. ; Reich, Stephanie ; Lange, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-b2ba36807f08274eb2fd7d89466d6f5a43c2e953fd597f5b04d8e1110773d4493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coupled modes</topic><topic>Dipoles</topic><topic>Energy absorption</topic><topic>Energy conversion</topic><topic>Excitation</topic><topic>Gold</topic><topic>Hot electrons</topic><topic>Landau damping</topic><topic>Multilayers</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Plasmons</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoeing, Dominik</creatorcontrib><creatorcontrib>Schulz, Florian</creatorcontrib><creatorcontrib>Mueller, Niclas S.</creatorcontrib><creatorcontrib>Reich, Stephanie</creatorcontrib><creatorcontrib>Lange, Holger</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoeing, Dominik</au><au>Schulz, Florian</au><au>Mueller, Niclas S.</au><au>Reich, Stephanie</au><au>Lange, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-02-14</date><risdate>2020</risdate><volume>152</volume><issue>6</issue><spage>064710</spage><epage>064710</epage><pages>064710-064710</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot electrons compared to the generation via bright plasmons. We performed transient-absorption spectroscopy on gold nanoparticle films to assess the initial electronic temperature before thermalization. We observe a significant increase in the electron–phonon coupling time when dark plasmon modes are excited in these films. The results indicate an efficient energy absorption due to the suppressed radiative decay of dark plasmon modes and a subsequent energy transformation into hot electrons.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32061229</pmid><doi>10.1063/1.5131696</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4236-2806</orcidid><orcidid>https://orcid.org/0000-0002-3965-0903</orcidid><orcidid>https://orcid.org/0000-0003-4440-3680</orcidid><orcidid>https://orcid.org/0000-0002-8688-1974</orcidid><orcidid>https://orcid.org/0000-0002-2391-0256</orcidid><orcidid>https://orcid.org/0000000239650903</orcidid><orcidid>https://orcid.org/0000000286881974</orcidid><orcidid>https://orcid.org/0000000344403680</orcidid><orcidid>https://orcid.org/0000000242362806</orcidid><orcidid>https://orcid.org/0000000223910256</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-02, Vol.152 (6), p.064710-064710
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2356591609
source AIP Journals Complete; Alma/SFX Local Collection
subjects Coupled modes
Dipoles
Energy absorption
Energy conversion
Excitation
Gold
Hot electrons
Landau damping
Multilayers
Nanoparticles
Physics
Plasmons
Thermalization (energy absorption)
title Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark%20plasmon%20modes%20for%20efficient%20hot%20electron%20generation%20in%20multilayers%20of%20gold%20nanoparticles&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Hoeing,%20Dominik&rft.date=2020-02-14&rft.volume=152&rft.issue=6&rft.spage=064710&rft.epage=064710&rft.pages=064710-064710&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5131696&rft_dat=%3Cproquest_pubme%3E2356591609%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353779653&rft_id=info:pmid/32061229&rfr_iscdi=true