Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles
The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2020-02, Vol.152 (6), p.064710-064710 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 064710 |
---|---|
container_issue | 6 |
container_start_page | 064710 |
container_title | The Journal of chemical physics |
container_volume | 152 |
creator | Hoeing, Dominik Schulz, Florian Mueller, Niclas S. Reich, Stephanie Lange, Holger |
description | The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot electrons compared to the generation via bright plasmons. We performed transient-absorption spectroscopy on gold nanoparticle films to assess the initial electronic temperature before thermalization. We observe a significant increase in the electron–phonon coupling time when dark plasmon modes are excited in these films. The results indicate an efficient energy absorption due to the suppressed radiative decay of dark plasmon modes and a subsequent energy transformation into hot electrons. |
doi_str_mv | 10.1063/1.5131696 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2356591609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2356591609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-b2ba36807f08274eb2fd7d89466d6f5a43c2e953fd597f5b04d8e1110773d4493</originalsourceid><addsrcrecordid>eNp90EFrFTEQB_BQlPa1eugXkIAXFbZOkt1kc5RqVSh4qUdZsptJTZvdbJOs0G_vvr5nCwqeZg4__jP8CTllcMZAivfsrGGCSS0PyIZBqyslNTwjGwDOKi1BHpHjnG8AgCleH5IjwUEyzvWG_Pho0i2dg8ljnOgYLWbqYqLonB88ToX-jIViwKGkFVzjhMkUv65-5UsoPph7TJlGR69jsHQyU5xNKn4ImF-Q586EjC_384R8v_h0df6luvz2-ev5h8tqqFlbqp73RsgWlIOWqxp77qyyra6ltNI1phYDR90IZxutXNNDbVtkjIFSwta1FifkzS53TvFuwVy60ecBQzATxiV3XDSy0UzClr7-i97EJU3rd1sllNKyEat6u1NDijkndN2c_GjSfceg23besW7f-Wpf7ROXfkT7KP-UvIJ3O5AHXx7KezS_YnpK6mbr_of_Pf0bwsmXIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2353779653</pqid></control><display><type>article</type><title>Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Hoeing, Dominik ; Schulz, Florian ; Mueller, Niclas S. ; Reich, Stephanie ; Lange, Holger</creator><creatorcontrib>Hoeing, Dominik ; Schulz, Florian ; Mueller, Niclas S. ; Reich, Stephanie ; Lange, Holger</creatorcontrib><description>The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot electrons compared to the generation via bright plasmons. We performed transient-absorption spectroscopy on gold nanoparticle films to assess the initial electronic temperature before thermalization. We observe a significant increase in the electron–phonon coupling time when dark plasmon modes are excited in these films. The results indicate an efficient energy absorption due to the suppressed radiative decay of dark plasmon modes and a subsequent energy transformation into hot electrons.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5131696</identifier><identifier>PMID: 32061229</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coupled modes ; Dipoles ; Energy absorption ; Energy conversion ; Excitation ; Gold ; Hot electrons ; Landau damping ; Multilayers ; Nanoparticles ; Physics ; Plasmons ; Thermalization (energy absorption)</subject><ispartof>The Journal of chemical physics, 2020-02, Vol.152 (6), p.064710-064710</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-b2ba36807f08274eb2fd7d89466d6f5a43c2e953fd597f5b04d8e1110773d4493</citedby><cites>FETCH-LOGICAL-c418t-b2ba36807f08274eb2fd7d89466d6f5a43c2e953fd597f5b04d8e1110773d4493</cites><orcidid>0000-0002-4236-2806 ; 0000-0002-3965-0903 ; 0000-0003-4440-3680 ; 0000-0002-8688-1974 ; 0000-0002-2391-0256 ; 0000000239650903 ; 0000000286881974 ; 0000000344403680 ; 0000000242362806 ; 0000000223910256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5131696$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32061229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoeing, Dominik</creatorcontrib><creatorcontrib>Schulz, Florian</creatorcontrib><creatorcontrib>Mueller, Niclas S.</creatorcontrib><creatorcontrib>Reich, Stephanie</creatorcontrib><creatorcontrib>Lange, Holger</creatorcontrib><title>Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot electrons compared to the generation via bright plasmons. We performed transient-absorption spectroscopy on gold nanoparticle films to assess the initial electronic temperature before thermalization. We observe a significant increase in the electron–phonon coupling time when dark plasmon modes are excited in these films. The results indicate an efficient energy absorption due to the suppressed radiative decay of dark plasmon modes and a subsequent energy transformation into hot electrons.</description><subject>Coupled modes</subject><subject>Dipoles</subject><subject>Energy absorption</subject><subject>Energy conversion</subject><subject>Excitation</subject><subject>Gold</subject><subject>Hot electrons</subject><subject>Landau damping</subject><subject>Multilayers</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Plasmons</subject><subject>Thermalization (energy absorption)</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90EFrFTEQB_BQlPa1eugXkIAXFbZOkt1kc5RqVSh4qUdZsptJTZvdbJOs0G_vvr5nCwqeZg4__jP8CTllcMZAivfsrGGCSS0PyIZBqyslNTwjGwDOKi1BHpHjnG8AgCleH5IjwUEyzvWG_Pho0i2dg8ljnOgYLWbqYqLonB88ToX-jIViwKGkFVzjhMkUv65-5UsoPph7TJlGR69jsHQyU5xNKn4ImF-Q586EjC_384R8v_h0df6luvz2-ev5h8tqqFlbqp73RsgWlIOWqxp77qyyra6ltNI1phYDR90IZxutXNNDbVtkjIFSwta1FifkzS53TvFuwVy60ecBQzATxiV3XDSy0UzClr7-i97EJU3rd1sllNKyEat6u1NDijkndN2c_GjSfceg23besW7f-Wpf7ROXfkT7KP-UvIJ3O5AHXx7KezS_YnpK6mbr_of_Pf0bwsmXIQ</recordid><startdate>20200214</startdate><enddate>20200214</enddate><creator>Hoeing, Dominik</creator><creator>Schulz, Florian</creator><creator>Mueller, Niclas S.</creator><creator>Reich, Stephanie</creator><creator>Lange, Holger</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4236-2806</orcidid><orcidid>https://orcid.org/0000-0002-3965-0903</orcidid><orcidid>https://orcid.org/0000-0003-4440-3680</orcidid><orcidid>https://orcid.org/0000-0002-8688-1974</orcidid><orcidid>https://orcid.org/0000-0002-2391-0256</orcidid><orcidid>https://orcid.org/0000000239650903</orcidid><orcidid>https://orcid.org/0000000286881974</orcidid><orcidid>https://orcid.org/0000000344403680</orcidid><orcidid>https://orcid.org/0000000242362806</orcidid><orcidid>https://orcid.org/0000000223910256</orcidid></search><sort><creationdate>20200214</creationdate><title>Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles</title><author>Hoeing, Dominik ; Schulz, Florian ; Mueller, Niclas S. ; Reich, Stephanie ; Lange, Holger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-b2ba36807f08274eb2fd7d89466d6f5a43c2e953fd597f5b04d8e1110773d4493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coupled modes</topic><topic>Dipoles</topic><topic>Energy absorption</topic><topic>Energy conversion</topic><topic>Excitation</topic><topic>Gold</topic><topic>Hot electrons</topic><topic>Landau damping</topic><topic>Multilayers</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Plasmons</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoeing, Dominik</creatorcontrib><creatorcontrib>Schulz, Florian</creatorcontrib><creatorcontrib>Mueller, Niclas S.</creatorcontrib><creatorcontrib>Reich, Stephanie</creatorcontrib><creatorcontrib>Lange, Holger</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoeing, Dominik</au><au>Schulz, Florian</au><au>Mueller, Niclas S.</au><au>Reich, Stephanie</au><au>Lange, Holger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-02-14</date><risdate>2020</risdate><volume>152</volume><issue>6</issue><spage>064710</spage><epage>064710</epage><pages>064710-064710</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The excitation of dark plasmons, i.e., coupled plasmon modes with a vanishing net dipole, is expected to favor Landau damping over radiative damping. Dark plasmon excitation might, therefore, lead to an increased absorption of energy within gold nanoparticles, resulting in a strong generation of hot electrons compared to the generation via bright plasmons. We performed transient-absorption spectroscopy on gold nanoparticle films to assess the initial electronic temperature before thermalization. We observe a significant increase in the electron–phonon coupling time when dark plasmon modes are excited in these films. The results indicate an efficient energy absorption due to the suppressed radiative decay of dark plasmon modes and a subsequent energy transformation into hot electrons.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>32061229</pmid><doi>10.1063/1.5131696</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4236-2806</orcidid><orcidid>https://orcid.org/0000-0002-3965-0903</orcidid><orcidid>https://orcid.org/0000-0003-4440-3680</orcidid><orcidid>https://orcid.org/0000-0002-8688-1974</orcidid><orcidid>https://orcid.org/0000-0002-2391-0256</orcidid><orcidid>https://orcid.org/0000000239650903</orcidid><orcidid>https://orcid.org/0000000286881974</orcidid><orcidid>https://orcid.org/0000000344403680</orcidid><orcidid>https://orcid.org/0000000242362806</orcidid><orcidid>https://orcid.org/0000000223910256</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2020-02, Vol.152 (6), p.064710-064710 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2356591609 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Coupled modes Dipoles Energy absorption Energy conversion Excitation Gold Hot electrons Landau damping Multilayers Nanoparticles Physics Plasmons Thermalization (energy absorption) |
title | Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dark%20plasmon%20modes%20for%20efficient%20hot%20electron%20generation%20in%20multilayers%20of%20gold%20nanoparticles&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Hoeing,%20Dominik&rft.date=2020-02-14&rft.volume=152&rft.issue=6&rft.spage=064710&rft.epage=064710&rft.pages=064710-064710&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5131696&rft_dat=%3Cproquest_pubme%3E2356591609%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2353779653&rft_id=info:pmid/32061229&rfr_iscdi=true |