Slow-Motion Self-Assembly: Access to Intermediates with Heterochiral Peptides to Gain Control over Alignment Media Development

Understanding the intermediates or transition states in organic reactions has made it possible to develop theories and to synthesize important compounds. In contrast to organic reaction intermediates and even protein folding intermediates, the intermediates of peptide/protein self-assembly are not v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2020-03, Vol.14 (3), p.3344-3352
Hauptverfasser: Lee, Hye-soo, Lim, Yong-beom
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3352
container_issue 3
container_start_page 3344
container_title ACS nano
container_volume 14
creator Lee, Hye-soo
Lim, Yong-beom
description Understanding the intermediates or transition states in organic reactions has made it possible to develop theories and to synthesize important compounds. In contrast to organic reaction intermediates and even protein folding intermediates, the intermediates of peptide/protein self-assembly are not very well understood. Here we report that the self-assembly kinetics of linear heterochiral peptides are significantly slower than those of the corresponding homochiral peptides, which enables direct microscopic observation of assembly intermediates. By designing racemic or asymmetric heterochiral peptides, we were able to discover unusual mixed helical (MP-helix) and overtwisted intermediates. The convergence of equilibrium morphology between the homochiral and heterochiral peptides enables us to reasonably deduce the unobservable intermediates of rapidly assembling homochiral peptides. By utilizing the discovered information about the assembly intermediates, we were able to develop a functional NMR alignment medium that enables the measurement of residual dipolar couplings (RDCs) in a time-dependent manner. Although much less studied than their cyclic counterparts, the linear form of heterochiral peptides provides a means of obtaining a more in-depth understanding of the self-assembly pathway and of developing sophisticated bottom-up materials.
doi_str_mv 10.1021/acsnano.9b09070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2355976182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355976182</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-fb6656a1ded20811c9fc11d296077a5c8b389b5839ebbc1d33120c8b64640e4f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWj_O3iRHQbYmm242663UjxYUhSp4W7LZWU3JJjVJW7z4293a6s3TDC_PvDAPQqeU9ClJ6aVUwUrr-kVFCpKTHdSjBeMJEfx192_P6AE6DGFGSJaLnO-jA5aSTORE9NDX1LhV8uCidhZPwTTJMARoK_N5hYdKQQg4OjyxEXwLtZYRAl7p-I7H0EVOvWsvDX6CedQ1_LB3Uls8cjZ6Z7BbgsdDo99sCzbih3UFvoYlGDdfJ8dor5EmwMl2HqGX25vn0Ti5f7ybjIb3iWSMxaSpOM-4pDXUKRGUqqJRlNZpwUmey0yJiomiygQroKoUrRmjKelSPuADAoOGHaHzTe_cu48FhFi2OigwRlpwi1CmLMuKnFORdujlBlXeheChKedet9J_lpSUa-nlVnq5ld5dnG3LF1Un6Y__tdwBFxuguyxnbuFt9-u_dd9Eso7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355976182</pqid></control><display><type>article</type><title>Slow-Motion Self-Assembly: Access to Intermediates with Heterochiral Peptides to Gain Control over Alignment Media Development</title><source>American Chemical Society Journals</source><creator>Lee, Hye-soo ; Lim, Yong-beom</creator><creatorcontrib>Lee, Hye-soo ; Lim, Yong-beom</creatorcontrib><description>Understanding the intermediates or transition states in organic reactions has made it possible to develop theories and to synthesize important compounds. In contrast to organic reaction intermediates and even protein folding intermediates, the intermediates of peptide/protein self-assembly are not very well understood. Here we report that the self-assembly kinetics of linear heterochiral peptides are significantly slower than those of the corresponding homochiral peptides, which enables direct microscopic observation of assembly intermediates. By designing racemic or asymmetric heterochiral peptides, we were able to discover unusual mixed helical (MP-helix) and overtwisted intermediates. The convergence of equilibrium morphology between the homochiral and heterochiral peptides enables us to reasonably deduce the unobservable intermediates of rapidly assembling homochiral peptides. By utilizing the discovered information about the assembly intermediates, we were able to develop a functional NMR alignment medium that enables the measurement of residual dipolar couplings (RDCs) in a time-dependent manner. Although much less studied than their cyclic counterparts, the linear form of heterochiral peptides provides a means of obtaining a more in-depth understanding of the self-assembly pathway and of developing sophisticated bottom-up materials.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b09070</identifier><identifier>PMID: 32058708</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2020-03, Vol.14 (3), p.3344-3352</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-fb6656a1ded20811c9fc11d296077a5c8b389b5839ebbc1d33120c8b64640e4f3</citedby><cites>FETCH-LOGICAL-a333t-fb6656a1ded20811c9fc11d296077a5c8b389b5839ebbc1d33120c8b64640e4f3</cites><orcidid>0000-0001-6590-7373 ; 0000-0002-7705-2218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.9b09070$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.9b09070$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32058708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hye-soo</creatorcontrib><creatorcontrib>Lim, Yong-beom</creatorcontrib><title>Slow-Motion Self-Assembly: Access to Intermediates with Heterochiral Peptides to Gain Control over Alignment Media Development</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Understanding the intermediates or transition states in organic reactions has made it possible to develop theories and to synthesize important compounds. In contrast to organic reaction intermediates and even protein folding intermediates, the intermediates of peptide/protein self-assembly are not very well understood. Here we report that the self-assembly kinetics of linear heterochiral peptides are significantly slower than those of the corresponding homochiral peptides, which enables direct microscopic observation of assembly intermediates. By designing racemic or asymmetric heterochiral peptides, we were able to discover unusual mixed helical (MP-helix) and overtwisted intermediates. The convergence of equilibrium morphology between the homochiral and heterochiral peptides enables us to reasonably deduce the unobservable intermediates of rapidly assembling homochiral peptides. By utilizing the discovered information about the assembly intermediates, we were able to develop a functional NMR alignment medium that enables the measurement of residual dipolar couplings (RDCs) in a time-dependent manner. Although much less studied than their cyclic counterparts, the linear form of heterochiral peptides provides a means of obtaining a more in-depth understanding of the self-assembly pathway and of developing sophisticated bottom-up materials.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWj_O3iRHQbYmm242663UjxYUhSp4W7LZWU3JJjVJW7z4293a6s3TDC_PvDAPQqeU9ClJ6aVUwUrr-kVFCpKTHdSjBeMJEfx192_P6AE6DGFGSJaLnO-jA5aSTORE9NDX1LhV8uCidhZPwTTJMARoK_N5hYdKQQg4OjyxEXwLtZYRAl7p-I7H0EVOvWsvDX6CedQ1_LB3Uls8cjZ6Z7BbgsdDo99sCzbih3UFvoYlGDdfJ8dor5EmwMl2HqGX25vn0Ti5f7ybjIb3iWSMxaSpOM-4pDXUKRGUqqJRlNZpwUmey0yJiomiygQroKoUrRmjKelSPuADAoOGHaHzTe_cu48FhFi2OigwRlpwi1CmLMuKnFORdujlBlXeheChKedet9J_lpSUa-nlVnq5ld5dnG3LF1Un6Y__tdwBFxuguyxnbuFt9-u_dd9Eso7Y</recordid><startdate>20200324</startdate><enddate>20200324</enddate><creator>Lee, Hye-soo</creator><creator>Lim, Yong-beom</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6590-7373</orcidid><orcidid>https://orcid.org/0000-0002-7705-2218</orcidid></search><sort><creationdate>20200324</creationdate><title>Slow-Motion Self-Assembly: Access to Intermediates with Heterochiral Peptides to Gain Control over Alignment Media Development</title><author>Lee, Hye-soo ; Lim, Yong-beom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-fb6656a1ded20811c9fc11d296077a5c8b389b5839ebbc1d33120c8b64640e4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hye-soo</creatorcontrib><creatorcontrib>Lim, Yong-beom</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hye-soo</au><au>Lim, Yong-beom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow-Motion Self-Assembly: Access to Intermediates with Heterochiral Peptides to Gain Control over Alignment Media Development</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-03-24</date><risdate>2020</risdate><volume>14</volume><issue>3</issue><spage>3344</spage><epage>3352</epage><pages>3344-3352</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Understanding the intermediates or transition states in organic reactions has made it possible to develop theories and to synthesize important compounds. In contrast to organic reaction intermediates and even protein folding intermediates, the intermediates of peptide/protein self-assembly are not very well understood. Here we report that the self-assembly kinetics of linear heterochiral peptides are significantly slower than those of the corresponding homochiral peptides, which enables direct microscopic observation of assembly intermediates. By designing racemic or asymmetric heterochiral peptides, we were able to discover unusual mixed helical (MP-helix) and overtwisted intermediates. The convergence of equilibrium morphology between the homochiral and heterochiral peptides enables us to reasonably deduce the unobservable intermediates of rapidly assembling homochiral peptides. By utilizing the discovered information about the assembly intermediates, we were able to develop a functional NMR alignment medium that enables the measurement of residual dipolar couplings (RDCs) in a time-dependent manner. Although much less studied than their cyclic counterparts, the linear form of heterochiral peptides provides a means of obtaining a more in-depth understanding of the self-assembly pathway and of developing sophisticated bottom-up materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32058708</pmid><doi>10.1021/acsnano.9b09070</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6590-7373</orcidid><orcidid>https://orcid.org/0000-0002-7705-2218</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-03, Vol.14 (3), p.3344-3352
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2355976182
source American Chemical Society Journals
title Slow-Motion Self-Assembly: Access to Intermediates with Heterochiral Peptides to Gain Control over Alignment Media Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow-Motion%20Self-Assembly:%20Access%20to%20Intermediates%20with%20Heterochiral%20Peptides%20to%20Gain%20Control%20over%20Alignment%20Media%20Development&rft.jtitle=ACS%20nano&rft.au=Lee,%20Hye-soo&rft.date=2020-03-24&rft.volume=14&rft.issue=3&rft.spage=3344&rft.epage=3352&rft.pages=3344-3352&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b09070&rft_dat=%3Cproquest_cross%3E2355976182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355976182&rft_id=info:pmid/32058708&rfr_iscdi=true