Estimating treatment effects under untestable assumptions with nonignorable missing data

Nonignorable missing data poses key challenges for estimating treatment effects because the substantive model may not be identifiable without imposing further assumptions. For example, the Heckman selection model has been widely used for handling nonignorable missing data but requires the study to m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2020-05, Vol.39 (11), p.1658-1674
Hauptverfasser: Gomes, Manuel, Kenward, Michael G., Grieve, Richard, Carpenter, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1674
container_issue 11
container_start_page 1658
container_title Statistics in medicine
container_volume 39
creator Gomes, Manuel
Kenward, Michael G.
Grieve, Richard
Carpenter, James
description Nonignorable missing data poses key challenges for estimating treatment effects because the substantive model may not be identifiable without imposing further assumptions. For example, the Heckman selection model has been widely used for handling nonignorable missing data but requires the study to make correct assumptions, both about the joint distribution of the missingness and outcome and that there is a valid exclusion restriction. Recent studies have revisited how alternative selection model approaches, for example estimated by multiple imputation (MI) and maximum likelihood, relate to Heckman‐type approaches in addressing the first hurdle. However, the extent to which these different selection models rely on the exclusion restriction assumption with nonignorable missing data is unclear. Motivated by an interventional study (REFLUX) with nonignorable missing outcome data in half of the sample, this article critically examines the role of the exclusion restriction in Heckman, MI, and full‐likelihood selection models when addressing nonignorability. We explore the implications of the different methodological choices concerning the exclusion restriction for relative bias and root‐mean‐squared error in estimating treatment effects. We find that the relative performance of the methods differs in practically important ways according to the relevance and strength of the exclusion restriction. The full‐likelihood approach is less sensitive to alternative assumptions about the exclusion restriction than Heckman‐type models and appears an appropriate method for handling nonignorable missing data. We illustrate the implications of method choice for inference in the REFLUX study, which evaluates the effect of laparoscopic surgery on long‐term quality of life for patients with gastro‐oseophageal reflux disease.
doi_str_mv 10.1002/sim.8504
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2355966697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355966697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-c7f64b55445ad5e2483c475ecb56ffd8d4d243a92d6b81587ff9853d49f210ce3</originalsourceid><addsrcrecordid>eNp1kMtKxDAYRoMoOo6CTyAFN26quV-WIuMFRlyo4K6kTaId2nRMUgbf3oyOCoKb_IscDh8HgCMEzxCE-Dy2_ZlkkG6BCYJKlBAzuQ0mEAtRcoHYHtiPcQEhQgyLXbBHMGQKCjIBz7OY2l6n1r8UKVideutTYZ2zTYrF6I0N-U02Jl13ttAxjv0ytYOPxapNr4UffPvih_D527cxrkVGJ30Adpzuoj3c3Cl4upo9Xt6U8_vr28uLedkQSWjZCMdpzRilTBtmMZWkoYLZpmbcOSMNNZgSrbDhtURMCueUZMRQ5TCCjSVTcPrlXYbhbcw7q7yisV2nvR3GWGHCmOKcK5HRkz_oYhiDz-sypbCSnEH0K2zCEGOwrlqGXCi8VwhW69pVrl2ta2f0eCMc696aH_A7bwbKL2DVdvb9X1H1cHv3KfwAveyJcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392986501</pqid></control><display><type>article</type><title>Estimating treatment effects under untestable assumptions with nonignorable missing data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gomes, Manuel ; Kenward, Michael G. ; Grieve, Richard ; Carpenter, James</creator><creatorcontrib>Gomes, Manuel ; Kenward, Michael G. ; Grieve, Richard ; Carpenter, James</creatorcontrib><description>Nonignorable missing data poses key challenges for estimating treatment effects because the substantive model may not be identifiable without imposing further assumptions. For example, the Heckman selection model has been widely used for handling nonignorable missing data but requires the study to make correct assumptions, both about the joint distribution of the missingness and outcome and that there is a valid exclusion restriction. Recent studies have revisited how alternative selection model approaches, for example estimated by multiple imputation (MI) and maximum likelihood, relate to Heckman‐type approaches in addressing the first hurdle. However, the extent to which these different selection models rely on the exclusion restriction assumption with nonignorable missing data is unclear. Motivated by an interventional study (REFLUX) with nonignorable missing outcome data in half of the sample, this article critically examines the role of the exclusion restriction in Heckman, MI, and full‐likelihood selection models when addressing nonignorability. We explore the implications of the different methodological choices concerning the exclusion restriction for relative bias and root‐mean‐squared error in estimating treatment effects. We find that the relative performance of the methods differs in practically important ways according to the relevance and strength of the exclusion restriction. The full‐likelihood approach is less sensitive to alternative assumptions about the exclusion restriction than Heckman‐type models and appears an appropriate method for handling nonignorable missing data. We illustrate the implications of method choice for inference in the REFLUX study, which evaluates the effect of laparoscopic surgery on long‐term quality of life for patients with gastro‐oseophageal reflux disease.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8504</identifier><identifier>PMID: 32059073</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>average treatment effects ; full‐information maximum likelihood ; Heckman model ; Medical research ; Missing data ; missing not at random ; multiple imputation ; selection models ; Statistical inference</subject><ispartof>Statistics in medicine, 2020-05, Vol.39 (11), p.1658-1674</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-c7f64b55445ad5e2483c475ecb56ffd8d4d243a92d6b81587ff9853d49f210ce3</citedby><cites>FETCH-LOGICAL-c3834-c7f64b55445ad5e2483c475ecb56ffd8d4d243a92d6b81587ff9853d49f210ce3</cites><orcidid>0000-0002-1428-1232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8504$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8504$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32059073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomes, Manuel</creatorcontrib><creatorcontrib>Kenward, Michael G.</creatorcontrib><creatorcontrib>Grieve, Richard</creatorcontrib><creatorcontrib>Carpenter, James</creatorcontrib><title>Estimating treatment effects under untestable assumptions with nonignorable missing data</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Nonignorable missing data poses key challenges for estimating treatment effects because the substantive model may not be identifiable without imposing further assumptions. For example, the Heckman selection model has been widely used for handling nonignorable missing data but requires the study to make correct assumptions, both about the joint distribution of the missingness and outcome and that there is a valid exclusion restriction. Recent studies have revisited how alternative selection model approaches, for example estimated by multiple imputation (MI) and maximum likelihood, relate to Heckman‐type approaches in addressing the first hurdle. However, the extent to which these different selection models rely on the exclusion restriction assumption with nonignorable missing data is unclear. Motivated by an interventional study (REFLUX) with nonignorable missing outcome data in half of the sample, this article critically examines the role of the exclusion restriction in Heckman, MI, and full‐likelihood selection models when addressing nonignorability. We explore the implications of the different methodological choices concerning the exclusion restriction for relative bias and root‐mean‐squared error in estimating treatment effects. We find that the relative performance of the methods differs in practically important ways according to the relevance and strength of the exclusion restriction. The full‐likelihood approach is less sensitive to alternative assumptions about the exclusion restriction than Heckman‐type models and appears an appropriate method for handling nonignorable missing data. We illustrate the implications of method choice for inference in the REFLUX study, which evaluates the effect of laparoscopic surgery on long‐term quality of life for patients with gastro‐oseophageal reflux disease.</description><subject>average treatment effects</subject><subject>full‐information maximum likelihood</subject><subject>Heckman model</subject><subject>Medical research</subject><subject>Missing data</subject><subject>missing not at random</subject><subject>multiple imputation</subject><subject>selection models</subject><subject>Statistical inference</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAYRoMoOo6CTyAFN26quV-WIuMFRlyo4K6kTaId2nRMUgbf3oyOCoKb_IscDh8HgCMEzxCE-Dy2_ZlkkG6BCYJKlBAzuQ0mEAtRcoHYHtiPcQEhQgyLXbBHMGQKCjIBz7OY2l6n1r8UKVideutTYZ2zTYrF6I0N-U02Jl13ttAxjv0ytYOPxapNr4UffPvih_D527cxrkVGJ30Adpzuoj3c3Cl4upo9Xt6U8_vr28uLedkQSWjZCMdpzRilTBtmMZWkoYLZpmbcOSMNNZgSrbDhtURMCueUZMRQ5TCCjSVTcPrlXYbhbcw7q7yisV2nvR3GWGHCmOKcK5HRkz_oYhiDz-sypbCSnEH0K2zCEGOwrlqGXCi8VwhW69pVrl2ta2f0eCMc696aH_A7bwbKL2DVdvb9X1H1cHv3KfwAveyJcw</recordid><startdate>20200520</startdate><enddate>20200520</enddate><creator>Gomes, Manuel</creator><creator>Kenward, Michael G.</creator><creator>Grieve, Richard</creator><creator>Carpenter, James</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1428-1232</orcidid></search><sort><creationdate>20200520</creationdate><title>Estimating treatment effects under untestable assumptions with nonignorable missing data</title><author>Gomes, Manuel ; Kenward, Michael G. ; Grieve, Richard ; Carpenter, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-c7f64b55445ad5e2483c475ecb56ffd8d4d243a92d6b81587ff9853d49f210ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>average treatment effects</topic><topic>full‐information maximum likelihood</topic><topic>Heckman model</topic><topic>Medical research</topic><topic>Missing data</topic><topic>missing not at random</topic><topic>multiple imputation</topic><topic>selection models</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomes, Manuel</creatorcontrib><creatorcontrib>Kenward, Michael G.</creatorcontrib><creatorcontrib>Grieve, Richard</creatorcontrib><creatorcontrib>Carpenter, James</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes, Manuel</au><au>Kenward, Michael G.</au><au>Grieve, Richard</au><au>Carpenter, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating treatment effects under untestable assumptions with nonignorable missing data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2020-05-20</date><risdate>2020</risdate><volume>39</volume><issue>11</issue><spage>1658</spage><epage>1674</epage><pages>1658-1674</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Nonignorable missing data poses key challenges for estimating treatment effects because the substantive model may not be identifiable without imposing further assumptions. For example, the Heckman selection model has been widely used for handling nonignorable missing data but requires the study to make correct assumptions, both about the joint distribution of the missingness and outcome and that there is a valid exclusion restriction. Recent studies have revisited how alternative selection model approaches, for example estimated by multiple imputation (MI) and maximum likelihood, relate to Heckman‐type approaches in addressing the first hurdle. However, the extent to which these different selection models rely on the exclusion restriction assumption with nonignorable missing data is unclear. Motivated by an interventional study (REFLUX) with nonignorable missing outcome data in half of the sample, this article critically examines the role of the exclusion restriction in Heckman, MI, and full‐likelihood selection models when addressing nonignorability. We explore the implications of the different methodological choices concerning the exclusion restriction for relative bias and root‐mean‐squared error in estimating treatment effects. We find that the relative performance of the methods differs in practically important ways according to the relevance and strength of the exclusion restriction. The full‐likelihood approach is less sensitive to alternative assumptions about the exclusion restriction than Heckman‐type models and appears an appropriate method for handling nonignorable missing data. We illustrate the implications of method choice for inference in the REFLUX study, which evaluates the effect of laparoscopic surgery on long‐term quality of life for patients with gastro‐oseophageal reflux disease.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32059073</pmid><doi>10.1002/sim.8504</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1428-1232</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2020-05, Vol.39 (11), p.1658-1674
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_2355966697
source Wiley Online Library Journals Frontfile Complete
subjects average treatment effects
full‐information maximum likelihood
Heckman model
Medical research
Missing data
missing not at random
multiple imputation
selection models
Statistical inference
title Estimating treatment effects under untestable assumptions with nonignorable missing data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20treatment%20effects%20under%20untestable%20assumptions%20with%20nonignorable%20missing%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Gomes,%20Manuel&rft.date=2020-05-20&rft.volume=39&rft.issue=11&rft.spage=1658&rft.epage=1674&rft.pages=1658-1674&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8504&rft_dat=%3Cproquest_cross%3E2355966697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2392986501&rft_id=info:pmid/32059073&rfr_iscdi=true