Phendione–Transition‐Metal Complexes with Bipolar Redox Activity for Lithium Batteries

1,10‐Phenanthroline‐5,6‐dione (phendione)‐based transition‐metal complexes are known for their use in pharmacological and catalysis applications. However, their application in electrochemical energy storage has not been investigated thus far. Herein, the feasibility of employing phendione–transition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2020-05, Vol.13 (9), p.2225-2231
Hauptverfasser: Lakraychi, Alae Eddine, De Kreijger, Simon, Gupta, Deepak, Elias, Benjamin, Vlad, Alexandru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2231
container_issue 9
container_start_page 2225
container_title ChemSusChem
container_volume 13
creator Lakraychi, Alae Eddine
De Kreijger, Simon
Gupta, Deepak
Elias, Benjamin
Vlad, Alexandru
description 1,10‐Phenanthroline‐5,6‐dione (phendione)‐based transition‐metal complexes are known for their use in pharmacological and catalysis applications. However, their application in electrochemical energy storage has not been investigated thus far. Herein, the feasibility of employing phendione–transition‐metal complexes was investigated for electrochemical charge storage by taking advantage of the reversible redox activity of both carbonyl groups and transition metal center, contributing to augmented charge storage. Interestingly, the chemistry of the counter ion in the studied complexes effectively tuned the solubility and improved the cycling stability. Although further studies are required to limit the solubility and active‐species shuttle, this study explores the bottlenecks of phendione–transition‐metal complexes as electrode materials for solid‐electrode‐format batteries. Seven for all batteries: 7‐electron charge storage through the bipolar redox activity in phendione–transition‐metal complexes is reported. Transition‐metal and counter‐anion chemistry are found to significantly influence the redox potential and cycling stability.
doi_str_mv 10.1002/cssc.201903290
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2355965140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398448585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4100-7bdeeb7d8b209bf88a4d14904df68927eae280d8f5a1e8ee83bb268288cfd8353</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMofqxePUrBi5ddJ2naTY5a_IIVxQ8QLyVtphhpmzVpXffmTxD8h_tL7LK6ghdPmTDPPMy8hOxSGFAAdph7nw8YUAkhk7BCNqmIeT-K-cPqsg7pBtny_hkgBhnH62QjZBBJGMImebx-wlobW-Ps_fPOqdqbpvvN3j8usVFlkNhqXOIb-mBimqfg2IxtqVxwg9q-BUd5Y15NMw0K64JR1zdtFRyrpkFn0G-TtUKVHne-3x65Pz25S877o6uzi-Ro1M95d0J_mGnEbKhFxkBmhRCKa8olcF3EQrIhKmQCtCgiRVEgijDLWCyYEHmhRRiFPXKw8I6dfWnRN2llfI5lqWq0rU9ZGEUyjiiHDt3_gz7b1tXddh0lBeciEnPhYEHlznrvsEjHzlTKTVMK6Tz1dJ56uky9G9j71rZZhXqJ_8TcAXIBTEyJ0390aXJ7m_zKvwDAvZEj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398448585</pqid></control><display><type>article</type><title>Phendione–Transition‐Metal Complexes with Bipolar Redox Activity for Lithium Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lakraychi, Alae Eddine ; De Kreijger, Simon ; Gupta, Deepak ; Elias, Benjamin ; Vlad, Alexandru</creator><creatorcontrib>Lakraychi, Alae Eddine ; De Kreijger, Simon ; Gupta, Deepak ; Elias, Benjamin ; Vlad, Alexandru</creatorcontrib><description>1,10‐Phenanthroline‐5,6‐dione (phendione)‐based transition‐metal complexes are known for their use in pharmacological and catalysis applications. However, their application in electrochemical energy storage has not been investigated thus far. Herein, the feasibility of employing phendione–transition‐metal complexes was investigated for electrochemical charge storage by taking advantage of the reversible redox activity of both carbonyl groups and transition metal center, contributing to augmented charge storage. Interestingly, the chemistry of the counter ion in the studied complexes effectively tuned the solubility and improved the cycling stability. Although further studies are required to limit the solubility and active‐species shuttle, this study explores the bottlenecks of phendione–transition‐metal complexes as electrode materials for solid‐electrode‐format batteries. Seven for all batteries: 7‐electron charge storage through the bipolar redox activity in phendione–transition‐metal complexes is reported. Transition‐metal and counter‐anion chemistry are found to significantly influence the redox potential and cycling stability.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201903290</identifier><identifier>PMID: 32059070</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bipolar redox activity ; Carbonyl groups ; Carbonyls ; Coordination compounds ; Electrode materials ; Electrodes ; Energy storage ; Lithium batteries ; organic electrode materials ; phendione metal complexes ; Rechargeable batteries ; Solubility ; Transition metals</subject><ispartof>ChemSusChem, 2020-05, Vol.13 (9), p.2225-2231</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4100-7bdeeb7d8b209bf88a4d14904df68927eae280d8f5a1e8ee83bb268288cfd8353</citedby><cites>FETCH-LOGICAL-c4100-7bdeeb7d8b209bf88a4d14904df68927eae280d8f5a1e8ee83bb268288cfd8353</cites><orcidid>0000-0002-0059-9119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201903290$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201903290$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32059070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakraychi, Alae Eddine</creatorcontrib><creatorcontrib>De Kreijger, Simon</creatorcontrib><creatorcontrib>Gupta, Deepak</creatorcontrib><creatorcontrib>Elias, Benjamin</creatorcontrib><creatorcontrib>Vlad, Alexandru</creatorcontrib><title>Phendione–Transition‐Metal Complexes with Bipolar Redox Activity for Lithium Batteries</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>1,10‐Phenanthroline‐5,6‐dione (phendione)‐based transition‐metal complexes are known for their use in pharmacological and catalysis applications. However, their application in electrochemical energy storage has not been investigated thus far. Herein, the feasibility of employing phendione–transition‐metal complexes was investigated for electrochemical charge storage by taking advantage of the reversible redox activity of both carbonyl groups and transition metal center, contributing to augmented charge storage. Interestingly, the chemistry of the counter ion in the studied complexes effectively tuned the solubility and improved the cycling stability. Although further studies are required to limit the solubility and active‐species shuttle, this study explores the bottlenecks of phendione–transition‐metal complexes as electrode materials for solid‐electrode‐format batteries. Seven for all batteries: 7‐electron charge storage through the bipolar redox activity in phendione–transition‐metal complexes is reported. Transition‐metal and counter‐anion chemistry are found to significantly influence the redox potential and cycling stability.</description><subject>bipolar redox activity</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Coordination compounds</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Lithium batteries</subject><subject>organic electrode materials</subject><subject>phendione metal complexes</subject><subject>Rechargeable batteries</subject><subject>Solubility</subject><subject>Transition metals</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMofqxePUrBi5ddJ2naTY5a_IIVxQ8QLyVtphhpmzVpXffmTxD8h_tL7LK6ghdPmTDPPMy8hOxSGFAAdph7nw8YUAkhk7BCNqmIeT-K-cPqsg7pBtny_hkgBhnH62QjZBBJGMImebx-wlobW-Ps_fPOqdqbpvvN3j8usVFlkNhqXOIb-mBimqfg2IxtqVxwg9q-BUd5Y15NMw0K64JR1zdtFRyrpkFn0G-TtUKVHne-3x65Pz25S877o6uzi-Ro1M95d0J_mGnEbKhFxkBmhRCKa8olcF3EQrIhKmQCtCgiRVEgijDLWCyYEHmhRRiFPXKw8I6dfWnRN2llfI5lqWq0rU9ZGEUyjiiHDt3_gz7b1tXddh0lBeciEnPhYEHlznrvsEjHzlTKTVMK6Tz1dJ56uky9G9j71rZZhXqJ_8TcAXIBTEyJ0390aXJ7m_zKvwDAvZEj</recordid><startdate>20200508</startdate><enddate>20200508</enddate><creator>Lakraychi, Alae Eddine</creator><creator>De Kreijger, Simon</creator><creator>Gupta, Deepak</creator><creator>Elias, Benjamin</creator><creator>Vlad, Alexandru</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0059-9119</orcidid></search><sort><creationdate>20200508</creationdate><title>Phendione–Transition‐Metal Complexes with Bipolar Redox Activity for Lithium Batteries</title><author>Lakraychi, Alae Eddine ; De Kreijger, Simon ; Gupta, Deepak ; Elias, Benjamin ; Vlad, Alexandru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4100-7bdeeb7d8b209bf88a4d14904df68927eae280d8f5a1e8ee83bb268288cfd8353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bipolar redox activity</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Coordination compounds</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Lithium batteries</topic><topic>organic electrode materials</topic><topic>phendione metal complexes</topic><topic>Rechargeable batteries</topic><topic>Solubility</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakraychi, Alae Eddine</creatorcontrib><creatorcontrib>De Kreijger, Simon</creatorcontrib><creatorcontrib>Gupta, Deepak</creatorcontrib><creatorcontrib>Elias, Benjamin</creatorcontrib><creatorcontrib>Vlad, Alexandru</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakraychi, Alae Eddine</au><au>De Kreijger, Simon</au><au>Gupta, Deepak</au><au>Elias, Benjamin</au><au>Vlad, Alexandru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phendione–Transition‐Metal Complexes with Bipolar Redox Activity for Lithium Batteries</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2020-05-08</date><risdate>2020</risdate><volume>13</volume><issue>9</issue><spage>2225</spage><epage>2231</epage><pages>2225-2231</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>1,10‐Phenanthroline‐5,6‐dione (phendione)‐based transition‐metal complexes are known for their use in pharmacological and catalysis applications. However, their application in electrochemical energy storage has not been investigated thus far. Herein, the feasibility of employing phendione–transition‐metal complexes was investigated for electrochemical charge storage by taking advantage of the reversible redox activity of both carbonyl groups and transition metal center, contributing to augmented charge storage. Interestingly, the chemistry of the counter ion in the studied complexes effectively tuned the solubility and improved the cycling stability. Although further studies are required to limit the solubility and active‐species shuttle, this study explores the bottlenecks of phendione–transition‐metal complexes as electrode materials for solid‐electrode‐format batteries. Seven for all batteries: 7‐electron charge storage through the bipolar redox activity in phendione–transition‐metal complexes is reported. Transition‐metal and counter‐anion chemistry are found to significantly influence the redox potential and cycling stability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32059070</pmid><doi>10.1002/cssc.201903290</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0059-9119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2020-05, Vol.13 (9), p.2225-2231
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_2355965140
source Wiley Online Library Journals Frontfile Complete
subjects bipolar redox activity
Carbonyl groups
Carbonyls
Coordination compounds
Electrode materials
Electrodes
Energy storage
Lithium batteries
organic electrode materials
phendione metal complexes
Rechargeable batteries
Solubility
Transition metals
title Phendione–Transition‐Metal Complexes with Bipolar Redox Activity for Lithium Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phendione%E2%80%93Transition%E2%80%90Metal%20Complexes%20with%20Bipolar%20Redox%20Activity%20for%20Lithium%20Batteries&rft.jtitle=ChemSusChem&rft.au=Lakraychi,%20Alae%20Eddine&rft.date=2020-05-08&rft.volume=13&rft.issue=9&rft.spage=2225&rft.epage=2231&rft.pages=2225-2231&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201903290&rft_dat=%3Cproquest_cross%3E2398448585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398448585&rft_id=info:pmid/32059070&rfr_iscdi=true