Phendione–Transition‐Metal Complexes with Bipolar Redox Activity for Lithium Batteries
1,10‐Phenanthroline‐5,6‐dione (phendione)‐based transition‐metal complexes are known for their use in pharmacological and catalysis applications. However, their application in electrochemical energy storage has not been investigated thus far. Herein, the feasibility of employing phendione–transition...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2020-05, Vol.13 (9), p.2225-2231 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2231 |
---|---|
container_issue | 9 |
container_start_page | 2225 |
container_title | ChemSusChem |
container_volume | 13 |
creator | Lakraychi, Alae Eddine De Kreijger, Simon Gupta, Deepak Elias, Benjamin Vlad, Alexandru |
description | 1,10‐Phenanthroline‐5,6‐dione (phendione)‐based transition‐metal complexes are known for their use in pharmacological and catalysis applications. However, their application in electrochemical energy storage has not been investigated thus far. Herein, the feasibility of employing phendione–transition‐metal complexes was investigated for electrochemical charge storage by taking advantage of the reversible redox activity of both carbonyl groups and transition metal center, contributing to augmented charge storage. Interestingly, the chemistry of the counter ion in the studied complexes effectively tuned the solubility and improved the cycling stability. Although further studies are required to limit the solubility and active‐species shuttle, this study explores the bottlenecks of phendione–transition‐metal complexes as electrode materials for solid‐electrode‐format batteries.
Seven for all batteries: 7‐electron charge storage through the bipolar redox activity in phendione–transition‐metal complexes is reported. Transition‐metal and counter‐anion chemistry are found to significantly influence the redox potential and cycling stability. |
doi_str_mv | 10.1002/cssc.201903290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2355965140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2398448585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4100-7bdeeb7d8b209bf88a4d14904df68927eae280d8f5a1e8ee83bb268288cfd8353</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMofqxePUrBi5ddJ2naTY5a_IIVxQ8QLyVtphhpmzVpXffmTxD8h_tL7LK6ghdPmTDPPMy8hOxSGFAAdph7nw8YUAkhk7BCNqmIeT-K-cPqsg7pBtny_hkgBhnH62QjZBBJGMImebx-wlobW-Ps_fPOqdqbpvvN3j8usVFlkNhqXOIb-mBimqfg2IxtqVxwg9q-BUd5Y15NMw0K64JR1zdtFRyrpkFn0G-TtUKVHne-3x65Pz25S877o6uzi-Ro1M95d0J_mGnEbKhFxkBmhRCKa8olcF3EQrIhKmQCtCgiRVEgijDLWCyYEHmhRRiFPXKw8I6dfWnRN2llfI5lqWq0rU9ZGEUyjiiHDt3_gz7b1tXddh0lBeciEnPhYEHlznrvsEjHzlTKTVMK6Tz1dJ56uky9G9j71rZZhXqJ_8TcAXIBTEyJ0390aXJ7m_zKvwDAvZEj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2398448585</pqid></control><display><type>article</type><title>Phendione–Transition‐Metal Complexes with Bipolar Redox Activity for Lithium Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lakraychi, Alae Eddine ; De Kreijger, Simon ; Gupta, Deepak ; Elias, Benjamin ; Vlad, Alexandru</creator><creatorcontrib>Lakraychi, Alae Eddine ; De Kreijger, Simon ; Gupta, Deepak ; Elias, Benjamin ; Vlad, Alexandru</creatorcontrib><description>1,10‐Phenanthroline‐5,6‐dione (phendione)‐based transition‐metal complexes are known for their use in pharmacological and catalysis applications. However, their application in electrochemical energy storage has not been investigated thus far. Herein, the feasibility of employing phendione–transition‐metal complexes was investigated for electrochemical charge storage by taking advantage of the reversible redox activity of both carbonyl groups and transition metal center, contributing to augmented charge storage. Interestingly, the chemistry of the counter ion in the studied complexes effectively tuned the solubility and improved the cycling stability. Although further studies are required to limit the solubility and active‐species shuttle, this study explores the bottlenecks of phendione–transition‐metal complexes as electrode materials for solid‐electrode‐format batteries.
Seven for all batteries: 7‐electron charge storage through the bipolar redox activity in phendione–transition‐metal complexes is reported. Transition‐metal and counter‐anion chemistry are found to significantly influence the redox potential and cycling stability.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201903290</identifier><identifier>PMID: 32059070</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bipolar redox activity ; Carbonyl groups ; Carbonyls ; Coordination compounds ; Electrode materials ; Electrodes ; Energy storage ; Lithium batteries ; organic electrode materials ; phendione metal complexes ; Rechargeable batteries ; Solubility ; Transition metals</subject><ispartof>ChemSusChem, 2020-05, Vol.13 (9), p.2225-2231</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4100-7bdeeb7d8b209bf88a4d14904df68927eae280d8f5a1e8ee83bb268288cfd8353</citedby><cites>FETCH-LOGICAL-c4100-7bdeeb7d8b209bf88a4d14904df68927eae280d8f5a1e8ee83bb268288cfd8353</cites><orcidid>0000-0002-0059-9119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201903290$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201903290$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32059070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakraychi, Alae Eddine</creatorcontrib><creatorcontrib>De Kreijger, Simon</creatorcontrib><creatorcontrib>Gupta, Deepak</creatorcontrib><creatorcontrib>Elias, Benjamin</creatorcontrib><creatorcontrib>Vlad, Alexandru</creatorcontrib><title>Phendione–Transition‐Metal Complexes with Bipolar Redox Activity for Lithium Batteries</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>1,10‐Phenanthroline‐5,6‐dione (phendione)‐based transition‐metal complexes are known for their use in pharmacological and catalysis applications. However, their application in electrochemical energy storage has not been investigated thus far. Herein, the feasibility of employing phendione–transition‐metal complexes was investigated for electrochemical charge storage by taking advantage of the reversible redox activity of both carbonyl groups and transition metal center, contributing to augmented charge storage. Interestingly, the chemistry of the counter ion in the studied complexes effectively tuned the solubility and improved the cycling stability. Although further studies are required to limit the solubility and active‐species shuttle, this study explores the bottlenecks of phendione–transition‐metal complexes as electrode materials for solid‐electrode‐format batteries.
Seven for all batteries: 7‐electron charge storage through the bipolar redox activity in phendione–transition‐metal complexes is reported. Transition‐metal and counter‐anion chemistry are found to significantly influence the redox potential and cycling stability.</description><subject>bipolar redox activity</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Coordination compounds</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Lithium batteries</subject><subject>organic electrode materials</subject><subject>phendione metal complexes</subject><subject>Rechargeable batteries</subject><subject>Solubility</subject><subject>Transition metals</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMofqxePUrBi5ddJ2naTY5a_IIVxQ8QLyVtphhpmzVpXffmTxD8h_tL7LK6ghdPmTDPPMy8hOxSGFAAdph7nw8YUAkhk7BCNqmIeT-K-cPqsg7pBtny_hkgBhnH62QjZBBJGMImebx-wlobW-Ps_fPOqdqbpvvN3j8usVFlkNhqXOIb-mBimqfg2IxtqVxwg9q-BUd5Y15NMw0K64JR1zdtFRyrpkFn0G-TtUKVHne-3x65Pz25S877o6uzi-Ro1M95d0J_mGnEbKhFxkBmhRCKa8olcF3EQrIhKmQCtCgiRVEgijDLWCyYEHmhRRiFPXKw8I6dfWnRN2llfI5lqWq0rU9ZGEUyjiiHDt3_gz7b1tXddh0lBeciEnPhYEHlznrvsEjHzlTKTVMK6Tz1dJ56uky9G9j71rZZhXqJ_8TcAXIBTEyJ0390aXJ7m_zKvwDAvZEj</recordid><startdate>20200508</startdate><enddate>20200508</enddate><creator>Lakraychi, Alae Eddine</creator><creator>De Kreijger, Simon</creator><creator>Gupta, Deepak</creator><creator>Elias, Benjamin</creator><creator>Vlad, Alexandru</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0059-9119</orcidid></search><sort><creationdate>20200508</creationdate><title>Phendione–Transition‐Metal Complexes with Bipolar Redox Activity for Lithium Batteries</title><author>Lakraychi, Alae Eddine ; De Kreijger, Simon ; Gupta, Deepak ; Elias, Benjamin ; Vlad, Alexandru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4100-7bdeeb7d8b209bf88a4d14904df68927eae280d8f5a1e8ee83bb268288cfd8353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>bipolar redox activity</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Coordination compounds</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Lithium batteries</topic><topic>organic electrode materials</topic><topic>phendione metal complexes</topic><topic>Rechargeable batteries</topic><topic>Solubility</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakraychi, Alae Eddine</creatorcontrib><creatorcontrib>De Kreijger, Simon</creatorcontrib><creatorcontrib>Gupta, Deepak</creatorcontrib><creatorcontrib>Elias, Benjamin</creatorcontrib><creatorcontrib>Vlad, Alexandru</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakraychi, Alae Eddine</au><au>De Kreijger, Simon</au><au>Gupta, Deepak</au><au>Elias, Benjamin</au><au>Vlad, Alexandru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phendione–Transition‐Metal Complexes with Bipolar Redox Activity for Lithium Batteries</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2020-05-08</date><risdate>2020</risdate><volume>13</volume><issue>9</issue><spage>2225</spage><epage>2231</epage><pages>2225-2231</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>1,10‐Phenanthroline‐5,6‐dione (phendione)‐based transition‐metal complexes are known for their use in pharmacological and catalysis applications. However, their application in electrochemical energy storage has not been investigated thus far. Herein, the feasibility of employing phendione–transition‐metal complexes was investigated for electrochemical charge storage by taking advantage of the reversible redox activity of both carbonyl groups and transition metal center, contributing to augmented charge storage. Interestingly, the chemistry of the counter ion in the studied complexes effectively tuned the solubility and improved the cycling stability. Although further studies are required to limit the solubility and active‐species shuttle, this study explores the bottlenecks of phendione–transition‐metal complexes as electrode materials for solid‐electrode‐format batteries.
Seven for all batteries: 7‐electron charge storage through the bipolar redox activity in phendione–transition‐metal complexes is reported. Transition‐metal and counter‐anion chemistry are found to significantly influence the redox potential and cycling stability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32059070</pmid><doi>10.1002/cssc.201903290</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0059-9119</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2020-05, Vol.13 (9), p.2225-2231 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_2355965140 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | bipolar redox activity Carbonyl groups Carbonyls Coordination compounds Electrode materials Electrodes Energy storage Lithium batteries organic electrode materials phendione metal complexes Rechargeable batteries Solubility Transition metals |
title | Phendione–Transition‐Metal Complexes with Bipolar Redox Activity for Lithium Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A12%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phendione%E2%80%93Transition%E2%80%90Metal%20Complexes%20with%20Bipolar%20Redox%20Activity%20for%20Lithium%20Batteries&rft.jtitle=ChemSusChem&rft.au=Lakraychi,%20Alae%20Eddine&rft.date=2020-05-08&rft.volume=13&rft.issue=9&rft.spage=2225&rft.epage=2231&rft.pages=2225-2231&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201903290&rft_dat=%3Cproquest_cross%3E2398448585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2398448585&rft_id=info:pmid/32059070&rfr_iscdi=true |