Microhabitat contributes to microgeographic divergence in threespine stickleback
Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeograp...
Gespeichert in:
Veröffentlicht in: | Evolution 2020-04, Vol.74 (4), p.749-763 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 763 |
---|---|
container_issue | 4 |
container_start_page | 749 |
container_title | Evolution |
container_volume | 74 |
creator | Maciejewski, Meghan F. Jiang, Cynthia Stuart, Yoel E. Bolnick, Daniel I. |
description | Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeographic divergence, which theory suggests can arise under specific conditions: exceptionally strong selection, phenotypic plasticity in philopatric individuals, or nonrandom dispersal. Here, we present evidence of microgeographic morphological variation within lake and stream populations of threespine stickleback (Gasterosteus aculeatus). It seems reasonable to assume that a given lake or stream population of fish is well-mixed. However, we found this assumption to be untenable. We examined trap-to-trap variation in 34 morphological traits measured on stickleback from 16 lakes and 16 streams. Most traits varied appreciably among traps within populations. Both between-trap distance and microhabitat characteristics such as depth and substrate explained some of the within-population morphological variance. Microhabitat was also associated with genotype at particular loci but there was no genetic isolation by distance, implying that heritable habitat preferences may contribute to microgeographic variation. Our study adds to growing evidence that microgeographic divergence can occur across small spatial scales within individuals’daily dispersal neighborhood where gene flow is expected to be strong. |
doi_str_mv | 10.1111/evo.13942 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2355951858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48577398</jstor_id><sourcerecordid>48577398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4412-867b960148b58ed7d089ab12b0f79a42272fe2de1b55d37f29b3e07ed8e211653</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EgnIZeABQJBYYAr7EsT2iipsEggFYIzs5aV3SuNgOiLfHpcCAhJcz-Dufzv8jtE_wKUnvDN7cKWGqoGtoRDiXOS-Lch2NMCZFziTFW2g7hBnGWHGiNtEWo5hLLukIPdzZ2rupNjbqmNWuj96aIULIosvmy78JuInXi6mts8a-gZ9AX0Nm-yxOPUBY2B6yEG390oHR9csu2mh1F2Dve-6gp8uLx_F1fnt_dTM-v83roiA0l6Uwqkz3ScMlNKLBUmlDqMGtULqgVNAWaAPEcN4w0VJlGGABjQRKSMnZDjpeeRfevQ4QYjW3oYau0z24IVSUcZ7SppQJPfqDztzg-3RdohQWAlOyFJ6sqJQ5BA9ttfB2rv1HRXC1rLlKNVdfNSf28Ns4mDk0v-RPrwk4WwHvtoOP_03VxfP9j_JgtTEL0fnfjUJyIZiS7BNNgZAp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390770215</pqid></control><display><type>article</type><title>Microhabitat contributes to microgeographic divergence in threespine stickleback</title><source>MEDLINE</source><source>Wiley Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Maciejewski, Meghan F. ; Jiang, Cynthia ; Stuart, Yoel E. ; Bolnick, Daniel I.</creator><creatorcontrib>Maciejewski, Meghan F. ; Jiang, Cynthia ; Stuart, Yoel E. ; Bolnick, Daniel I.</creatorcontrib><description>Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeographic divergence, which theory suggests can arise under specific conditions: exceptionally strong selection, phenotypic plasticity in philopatric individuals, or nonrandom dispersal. Here, we present evidence of microgeographic morphological variation within lake and stream populations of threespine stickleback (Gasterosteus aculeatus). It seems reasonable to assume that a given lake or stream population of fish is well-mixed. However, we found this assumption to be untenable. We examined trap-to-trap variation in 34 morphological traits measured on stickleback from 16 lakes and 16 streams. Most traits varied appreciably among traps within populations. Both between-trap distance and microhabitat characteristics such as depth and substrate explained some of the within-population morphological variance. Microhabitat was also associated with genotype at particular loci but there was no genetic isolation by distance, implying that heritable habitat preferences may contribute to microgeographic variation. Our study adds to growing evidence that microgeographic divergence can occur across small spatial scales within individuals’daily dispersal neighborhood where gene flow is expected to be strong.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/evo.13942</identifier><identifier>PMID: 32058582</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>Adaptation, Physiological - genetics ; Animal behavior ; Animals ; Biological Evolution ; British Columbia ; Dispersal ; dispersal neighborhood ; Dispersion ; Divergence ; Ecosystem ; Female ; Fish populations ; Gasterosteus aculeatus ; Gene flow ; Genetic isolation ; Genotype ; Genotypes ; Habitat preferences ; Habitats ; Lakes ; Male ; Microenvironments ; Microhabitats ; migration‐selection balance ; Morphology ; Multivariate Analysis ; ORIGINAL ARTICLE ; Phenotype ; Phenotypic plasticity ; Populations ; Smegmamorpha - anatomy & histology ; Smegmamorpha - genetics ; Substrates</subject><ispartof>Evolution, 2020-04, Vol.74 (4), p.749-763</ispartof><rights>2020 The Authors. Evolution © 2020 The Society for the Study of Evolution</rights><rights>2020 The Authors. © 2020 The Society for the Study of Evolution.</rights><rights>2020 The Authors. Evolution © 2020 The Society for the Study of Evolution.</rights><rights>2020, Society for the Study of Evolution</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4412-867b960148b58ed7d089ab12b0f79a42272fe2de1b55d37f29b3e07ed8e211653</citedby><cites>FETCH-LOGICAL-c4412-867b960148b58ed7d089ab12b0f79a42272fe2de1b55d37f29b3e07ed8e211653</cites><orcidid>0000-0002-2770-787X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48577398$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48577398$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32058582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maciejewski, Meghan F.</creatorcontrib><creatorcontrib>Jiang, Cynthia</creatorcontrib><creatorcontrib>Stuart, Yoel E.</creatorcontrib><creatorcontrib>Bolnick, Daniel I.</creatorcontrib><title>Microhabitat contributes to microgeographic divergence in threespine stickleback</title><title>Evolution</title><addtitle>Evolution</addtitle><description>Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeographic divergence, which theory suggests can arise under specific conditions: exceptionally strong selection, phenotypic plasticity in philopatric individuals, or nonrandom dispersal. Here, we present evidence of microgeographic morphological variation within lake and stream populations of threespine stickleback (Gasterosteus aculeatus). It seems reasonable to assume that a given lake or stream population of fish is well-mixed. However, we found this assumption to be untenable. We examined trap-to-trap variation in 34 morphological traits measured on stickleback from 16 lakes and 16 streams. Most traits varied appreciably among traps within populations. Both between-trap distance and microhabitat characteristics such as depth and substrate explained some of the within-population morphological variance. Microhabitat was also associated with genotype at particular loci but there was no genetic isolation by distance, implying that heritable habitat preferences may contribute to microgeographic variation. Our study adds to growing evidence that microgeographic divergence can occur across small spatial scales within individuals’daily dispersal neighborhood where gene flow is expected to be strong.</description><subject>Adaptation, Physiological - genetics</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>British Columbia</subject><subject>Dispersal</subject><subject>dispersal neighborhood</subject><subject>Dispersion</subject><subject>Divergence</subject><subject>Ecosystem</subject><subject>Female</subject><subject>Fish populations</subject><subject>Gasterosteus aculeatus</subject><subject>Gene flow</subject><subject>Genetic isolation</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Habitat preferences</subject><subject>Habitats</subject><subject>Lakes</subject><subject>Male</subject><subject>Microenvironments</subject><subject>Microhabitats</subject><subject>migration‐selection balance</subject><subject>Morphology</subject><subject>Multivariate Analysis</subject><subject>ORIGINAL ARTICLE</subject><subject>Phenotype</subject><subject>Phenotypic plasticity</subject><subject>Populations</subject><subject>Smegmamorpha - anatomy & histology</subject><subject>Smegmamorpha - genetics</subject><subject>Substrates</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kLtOwzAUhi0EgnIZeABQJBYYAr7EsT2iipsEggFYIzs5aV3SuNgOiLfHpcCAhJcz-Dufzv8jtE_wKUnvDN7cKWGqoGtoRDiXOS-Lch2NMCZFziTFW2g7hBnGWHGiNtEWo5hLLukIPdzZ2rupNjbqmNWuj96aIULIosvmy78JuInXi6mts8a-gZ9AX0Nm-yxOPUBY2B6yEG390oHR9csu2mh1F2Dve-6gp8uLx_F1fnt_dTM-v83roiA0l6Uwqkz3ScMlNKLBUmlDqMGtULqgVNAWaAPEcN4w0VJlGGABjQRKSMnZDjpeeRfevQ4QYjW3oYau0z24IVSUcZ7SppQJPfqDztzg-3RdohQWAlOyFJ6sqJQ5BA9ttfB2rv1HRXC1rLlKNVdfNSf28Ns4mDk0v-RPrwk4WwHvtoOP_03VxfP9j_JgtTEL0fnfjUJyIZiS7BNNgZAp</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Maciejewski, Meghan F.</creator><creator>Jiang, Cynthia</creator><creator>Stuart, Yoel E.</creator><creator>Bolnick, Daniel I.</creator><general>Wiley</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2770-787X</orcidid></search><sort><creationdate>202004</creationdate><title>Microhabitat contributes to microgeographic divergence in threespine stickleback</title><author>Maciejewski, Meghan F. ; Jiang, Cynthia ; Stuart, Yoel E. ; Bolnick, Daniel I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4412-867b960148b58ed7d089ab12b0f79a42272fe2de1b55d37f29b3e07ed8e211653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>British Columbia</topic><topic>Dispersal</topic><topic>dispersal neighborhood</topic><topic>Dispersion</topic><topic>Divergence</topic><topic>Ecosystem</topic><topic>Female</topic><topic>Fish populations</topic><topic>Gasterosteus aculeatus</topic><topic>Gene flow</topic><topic>Genetic isolation</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Habitat preferences</topic><topic>Habitats</topic><topic>Lakes</topic><topic>Male</topic><topic>Microenvironments</topic><topic>Microhabitats</topic><topic>migration‐selection balance</topic><topic>Morphology</topic><topic>Multivariate Analysis</topic><topic>ORIGINAL ARTICLE</topic><topic>Phenotype</topic><topic>Phenotypic plasticity</topic><topic>Populations</topic><topic>Smegmamorpha - anatomy & histology</topic><topic>Smegmamorpha - genetics</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maciejewski, Meghan F.</creatorcontrib><creatorcontrib>Jiang, Cynthia</creatorcontrib><creatorcontrib>Stuart, Yoel E.</creatorcontrib><creatorcontrib>Bolnick, Daniel I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maciejewski, Meghan F.</au><au>Jiang, Cynthia</au><au>Stuart, Yoel E.</au><au>Bolnick, Daniel I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microhabitat contributes to microgeographic divergence in threespine stickleback</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2020-04</date><risdate>2020</risdate><volume>74</volume><issue>4</issue><spage>749</spage><epage>763</epage><pages>749-763</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeographic divergence, which theory suggests can arise under specific conditions: exceptionally strong selection, phenotypic plasticity in philopatric individuals, or nonrandom dispersal. Here, we present evidence of microgeographic morphological variation within lake and stream populations of threespine stickleback (Gasterosteus aculeatus). It seems reasonable to assume that a given lake or stream population of fish is well-mixed. However, we found this assumption to be untenable. We examined trap-to-trap variation in 34 morphological traits measured on stickleback from 16 lakes and 16 streams. Most traits varied appreciably among traps within populations. Both between-trap distance and microhabitat characteristics such as depth and substrate explained some of the within-population morphological variance. Microhabitat was also associated with genotype at particular loci but there was no genetic isolation by distance, implying that heritable habitat preferences may contribute to microgeographic variation. Our study adds to growing evidence that microgeographic divergence can occur across small spatial scales within individuals’daily dispersal neighborhood where gene flow is expected to be strong.</abstract><cop>United States</cop><pub>Wiley</pub><pmid>32058582</pmid><doi>10.1111/evo.13942</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2770-787X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-3820 |
ispartof | Evolution, 2020-04, Vol.74 (4), p.749-763 |
issn | 0014-3820 1558-5646 |
language | eng |
recordid | cdi_proquest_miscellaneous_2355951858 |
source | MEDLINE; Wiley Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Adaptation, Physiological - genetics Animal behavior Animals Biological Evolution British Columbia Dispersal dispersal neighborhood Dispersion Divergence Ecosystem Female Fish populations Gasterosteus aculeatus Gene flow Genetic isolation Genotype Genotypes Habitat preferences Habitats Lakes Male Microenvironments Microhabitats migration‐selection balance Morphology Multivariate Analysis ORIGINAL ARTICLE Phenotype Phenotypic plasticity Populations Smegmamorpha - anatomy & histology Smegmamorpha - genetics Substrates |
title | Microhabitat contributes to microgeographic divergence in threespine stickleback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microhabitat%20contributes%20to%20microgeographic%20divergence%20in%20threespine%20stickleback&rft.jtitle=Evolution&rft.au=Maciejewski,%20Meghan%20F.&rft.date=2020-04&rft.volume=74&rft.issue=4&rft.spage=749&rft.epage=763&rft.pages=749-763&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/evo.13942&rft_dat=%3Cjstor_proqu%3E48577398%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390770215&rft_id=info:pmid/32058582&rft_jstor_id=48577398&rfr_iscdi=true |