Microhabitat contributes to microgeographic divergence in threespine stickleback

Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeograp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2020-04, Vol.74 (4), p.749-763
Hauptverfasser: Maciejewski, Meghan F., Jiang, Cynthia, Stuart, Yoel E., Bolnick, Daniel I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 763
container_issue 4
container_start_page 749
container_title Evolution
container_volume 74
creator Maciejewski, Meghan F.
Jiang, Cynthia
Stuart, Yoel E.
Bolnick, Daniel I.
description Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeographic divergence, which theory suggests can arise under specific conditions: exceptionally strong selection, phenotypic plasticity in philopatric individuals, or nonrandom dispersal. Here, we present evidence of microgeographic morphological variation within lake and stream populations of threespine stickleback (Gasterosteus aculeatus). It seems reasonable to assume that a given lake or stream population of fish is well-mixed. However, we found this assumption to be untenable. We examined trap-to-trap variation in 34 morphological traits measured on stickleback from 16 lakes and 16 streams. Most traits varied appreciably among traps within populations. Both between-trap distance and microhabitat characteristics such as depth and substrate explained some of the within-population morphological variance. Microhabitat was also associated with genotype at particular loci but there was no genetic isolation by distance, implying that heritable habitat preferences may contribute to microgeographic variation. Our study adds to growing evidence that microgeographic divergence can occur across small spatial scales within individuals’daily dispersal neighborhood where gene flow is expected to be strong.
doi_str_mv 10.1111/evo.13942
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2355951858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48577398</jstor_id><sourcerecordid>48577398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4412-867b960148b58ed7d089ab12b0f79a42272fe2de1b55d37f29b3e07ed8e211653</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EgnIZeABQJBYYAr7EsT2iipsEggFYIzs5aV3SuNgOiLfHpcCAhJcz-Dufzv8jtE_wKUnvDN7cKWGqoGtoRDiXOS-Lch2NMCZFziTFW2g7hBnGWHGiNtEWo5hLLukIPdzZ2rupNjbqmNWuj96aIULIosvmy78JuInXi6mts8a-gZ9AX0Nm-yxOPUBY2B6yEG390oHR9csu2mh1F2Dve-6gp8uLx_F1fnt_dTM-v83roiA0l6Uwqkz3ScMlNKLBUmlDqMGtULqgVNAWaAPEcN4w0VJlGGABjQRKSMnZDjpeeRfevQ4QYjW3oYau0z24IVSUcZ7SppQJPfqDztzg-3RdohQWAlOyFJ6sqJQ5BA9ttfB2rv1HRXC1rLlKNVdfNSf28Ns4mDk0v-RPrwk4WwHvtoOP_03VxfP9j_JgtTEL0fnfjUJyIZiS7BNNgZAp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390770215</pqid></control><display><type>article</type><title>Microhabitat contributes to microgeographic divergence in threespine stickleback</title><source>MEDLINE</source><source>Wiley Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Maciejewski, Meghan F. ; Jiang, Cynthia ; Stuart, Yoel E. ; Bolnick, Daniel I.</creator><creatorcontrib>Maciejewski, Meghan F. ; Jiang, Cynthia ; Stuart, Yoel E. ; Bolnick, Daniel I.</creatorcontrib><description>Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeographic divergence, which theory suggests can arise under specific conditions: exceptionally strong selection, phenotypic plasticity in philopatric individuals, or nonrandom dispersal. Here, we present evidence of microgeographic morphological variation within lake and stream populations of threespine stickleback (Gasterosteus aculeatus). It seems reasonable to assume that a given lake or stream population of fish is well-mixed. However, we found this assumption to be untenable. We examined trap-to-trap variation in 34 morphological traits measured on stickleback from 16 lakes and 16 streams. Most traits varied appreciably among traps within populations. Both between-trap distance and microhabitat characteristics such as depth and substrate explained some of the within-population morphological variance. Microhabitat was also associated with genotype at particular loci but there was no genetic isolation by distance, implying that heritable habitat preferences may contribute to microgeographic variation. Our study adds to growing evidence that microgeographic divergence can occur across small spatial scales within individuals’daily dispersal neighborhood where gene flow is expected to be strong.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1111/evo.13942</identifier><identifier>PMID: 32058582</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>Adaptation, Physiological - genetics ; Animal behavior ; Animals ; Biological Evolution ; British Columbia ; Dispersal ; dispersal neighborhood ; Dispersion ; Divergence ; Ecosystem ; Female ; Fish populations ; Gasterosteus aculeatus ; Gene flow ; Genetic isolation ; Genotype ; Genotypes ; Habitat preferences ; Habitats ; Lakes ; Male ; Microenvironments ; Microhabitats ; migration‐selection balance ; Morphology ; Multivariate Analysis ; ORIGINAL ARTICLE ; Phenotype ; Phenotypic plasticity ; Populations ; Smegmamorpha - anatomy &amp; histology ; Smegmamorpha - genetics ; Substrates</subject><ispartof>Evolution, 2020-04, Vol.74 (4), p.749-763</ispartof><rights>2020 The Authors. Evolution © 2020 The Society for the Study of Evolution</rights><rights>2020 The Authors. © 2020 The Society for the Study of Evolution.</rights><rights>2020 The Authors. Evolution © 2020 The Society for the Study of Evolution.</rights><rights>2020, Society for the Study of Evolution</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4412-867b960148b58ed7d089ab12b0f79a42272fe2de1b55d37f29b3e07ed8e211653</citedby><cites>FETCH-LOGICAL-c4412-867b960148b58ed7d089ab12b0f79a42272fe2de1b55d37f29b3e07ed8e211653</cites><orcidid>0000-0002-2770-787X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48577398$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48577398$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32058582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maciejewski, Meghan F.</creatorcontrib><creatorcontrib>Jiang, Cynthia</creatorcontrib><creatorcontrib>Stuart, Yoel E.</creatorcontrib><creatorcontrib>Bolnick, Daniel I.</creatorcontrib><title>Microhabitat contributes to microgeographic divergence in threespine stickleback</title><title>Evolution</title><addtitle>Evolution</addtitle><description>Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeographic divergence, which theory suggests can arise under specific conditions: exceptionally strong selection, phenotypic plasticity in philopatric individuals, or nonrandom dispersal. Here, we present evidence of microgeographic morphological variation within lake and stream populations of threespine stickleback (Gasterosteus aculeatus). It seems reasonable to assume that a given lake or stream population of fish is well-mixed. However, we found this assumption to be untenable. We examined trap-to-trap variation in 34 morphological traits measured on stickleback from 16 lakes and 16 streams. Most traits varied appreciably among traps within populations. Both between-trap distance and microhabitat characteristics such as depth and substrate explained some of the within-population morphological variance. Microhabitat was also associated with genotype at particular loci but there was no genetic isolation by distance, implying that heritable habitat preferences may contribute to microgeographic variation. Our study adds to growing evidence that microgeographic divergence can occur across small spatial scales within individuals’daily dispersal neighborhood where gene flow is expected to be strong.</description><subject>Adaptation, Physiological - genetics</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>British Columbia</subject><subject>Dispersal</subject><subject>dispersal neighborhood</subject><subject>Dispersion</subject><subject>Divergence</subject><subject>Ecosystem</subject><subject>Female</subject><subject>Fish populations</subject><subject>Gasterosteus aculeatus</subject><subject>Gene flow</subject><subject>Genetic isolation</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Habitat preferences</subject><subject>Habitats</subject><subject>Lakes</subject><subject>Male</subject><subject>Microenvironments</subject><subject>Microhabitats</subject><subject>migration‐selection balance</subject><subject>Morphology</subject><subject>Multivariate Analysis</subject><subject>ORIGINAL ARTICLE</subject><subject>Phenotype</subject><subject>Phenotypic plasticity</subject><subject>Populations</subject><subject>Smegmamorpha - anatomy &amp; histology</subject><subject>Smegmamorpha - genetics</subject><subject>Substrates</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kLtOwzAUhi0EgnIZeABQJBYYAr7EsT2iipsEggFYIzs5aV3SuNgOiLfHpcCAhJcz-Dufzv8jtE_wKUnvDN7cKWGqoGtoRDiXOS-Lch2NMCZFziTFW2g7hBnGWHGiNtEWo5hLLukIPdzZ2rupNjbqmNWuj96aIULIosvmy78JuInXi6mts8a-gZ9AX0Nm-yxOPUBY2B6yEG390oHR9csu2mh1F2Dve-6gp8uLx_F1fnt_dTM-v83roiA0l6Uwqkz3ScMlNKLBUmlDqMGtULqgVNAWaAPEcN4w0VJlGGABjQRKSMnZDjpeeRfevQ4QYjW3oYau0z24IVSUcZ7SppQJPfqDztzg-3RdohQWAlOyFJ6sqJQ5BA9ttfB2rv1HRXC1rLlKNVdfNSf28Ns4mDk0v-RPrwk4WwHvtoOP_03VxfP9j_JgtTEL0fnfjUJyIZiS7BNNgZAp</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Maciejewski, Meghan F.</creator><creator>Jiang, Cynthia</creator><creator>Stuart, Yoel E.</creator><creator>Bolnick, Daniel I.</creator><general>Wiley</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2770-787X</orcidid></search><sort><creationdate>202004</creationdate><title>Microhabitat contributes to microgeographic divergence in threespine stickleback</title><author>Maciejewski, Meghan F. ; Jiang, Cynthia ; Stuart, Yoel E. ; Bolnick, Daniel I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4412-867b960148b58ed7d089ab12b0f79a42272fe2de1b55d37f29b3e07ed8e211653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>British Columbia</topic><topic>Dispersal</topic><topic>dispersal neighborhood</topic><topic>Dispersion</topic><topic>Divergence</topic><topic>Ecosystem</topic><topic>Female</topic><topic>Fish populations</topic><topic>Gasterosteus aculeatus</topic><topic>Gene flow</topic><topic>Genetic isolation</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Habitat preferences</topic><topic>Habitats</topic><topic>Lakes</topic><topic>Male</topic><topic>Microenvironments</topic><topic>Microhabitats</topic><topic>migration‐selection balance</topic><topic>Morphology</topic><topic>Multivariate Analysis</topic><topic>ORIGINAL ARTICLE</topic><topic>Phenotype</topic><topic>Phenotypic plasticity</topic><topic>Populations</topic><topic>Smegmamorpha - anatomy &amp; histology</topic><topic>Smegmamorpha - genetics</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maciejewski, Meghan F.</creatorcontrib><creatorcontrib>Jiang, Cynthia</creatorcontrib><creatorcontrib>Stuart, Yoel E.</creatorcontrib><creatorcontrib>Bolnick, Daniel I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maciejewski, Meghan F.</au><au>Jiang, Cynthia</au><au>Stuart, Yoel E.</au><au>Bolnick, Daniel I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microhabitat contributes to microgeographic divergence in threespine stickleback</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2020-04</date><risdate>2020</risdate><volume>74</volume><issue>4</issue><spage>749</spage><epage>763</epage><pages>749-763</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>Since the New Synthesis, most migration-selection balance theory has predicted that there should be negligible differentiation over small spatial scales (relative to dispersal), because gene flow should erode any effect of divergent selection. Nevertheless, there are classic examples of microgeographic divergence, which theory suggests can arise under specific conditions: exceptionally strong selection, phenotypic plasticity in philopatric individuals, or nonrandom dispersal. Here, we present evidence of microgeographic morphological variation within lake and stream populations of threespine stickleback (Gasterosteus aculeatus). It seems reasonable to assume that a given lake or stream population of fish is well-mixed. However, we found this assumption to be untenable. We examined trap-to-trap variation in 34 morphological traits measured on stickleback from 16 lakes and 16 streams. Most traits varied appreciably among traps within populations. Both between-trap distance and microhabitat characteristics such as depth and substrate explained some of the within-population morphological variance. Microhabitat was also associated with genotype at particular loci but there was no genetic isolation by distance, implying that heritable habitat preferences may contribute to microgeographic variation. Our study adds to growing evidence that microgeographic divergence can occur across small spatial scales within individuals’daily dispersal neighborhood where gene flow is expected to be strong.</abstract><cop>United States</cop><pub>Wiley</pub><pmid>32058582</pmid><doi>10.1111/evo.13942</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2770-787X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0014-3820
ispartof Evolution, 2020-04, Vol.74 (4), p.749-763
issn 0014-3820
1558-5646
language eng
recordid cdi_proquest_miscellaneous_2355951858
source MEDLINE; Wiley Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Adaptation, Physiological - genetics
Animal behavior
Animals
Biological Evolution
British Columbia
Dispersal
dispersal neighborhood
Dispersion
Divergence
Ecosystem
Female
Fish populations
Gasterosteus aculeatus
Gene flow
Genetic isolation
Genotype
Genotypes
Habitat preferences
Habitats
Lakes
Male
Microenvironments
Microhabitats
migration‐selection balance
Morphology
Multivariate Analysis
ORIGINAL ARTICLE
Phenotype
Phenotypic plasticity
Populations
Smegmamorpha - anatomy & histology
Smegmamorpha - genetics
Substrates
title Microhabitat contributes to microgeographic divergence in threespine stickleback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microhabitat%20contributes%20to%20microgeographic%20divergence%20in%20threespine%20stickleback&rft.jtitle=Evolution&rft.au=Maciejewski,%20Meghan%20F.&rft.date=2020-04&rft.volume=74&rft.issue=4&rft.spage=749&rft.epage=763&rft.pages=749-763&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1111/evo.13942&rft_dat=%3Cjstor_proqu%3E48577398%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390770215&rft_id=info:pmid/32058582&rft_jstor_id=48577398&rfr_iscdi=true