Unveiling the mechanism of lattice-mismatched crystal growth of a core-shell metal-organic framework

Determining the effect of severe lattice mismatch on the crystal growth mechanism and form of epitaxially grown materials is vital to understand and direct the form and function of such materials. Herein, we report the use of atomic force microscopy to reveal the growth of a shell metal-organic fram...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2019-11, Vol.10 (41), p.9571-9575
Hauptverfasser: Pambudi, Fajar I, Anderson, Michael W, Attfield, Martin P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9575
container_issue 41
container_start_page 9571
container_title Chemical science (Cambridge)
container_volume 10
creator Pambudi, Fajar I
Anderson, Michael W
Attfield, Martin P
description Determining the effect of severe lattice mismatch on the crystal growth mechanism and form of epitaxially grown materials is vital to understand and direct the form and function of such materials. Herein, we report the use of atomic force microscopy to reveal the growth of a shell metal-organic framework (MOF) on all faces of a core MOF that has similar , -lattice parameters but a ∼32% mismatch in the -lattice parameter. The work shows the mechanism through which the shell MOF overcomes the core terrace height mismatch depends on that mismatch being reduced before overgrowth of continuous shell layers can occur. This reduction is achieved a process of growth of non-continuous shell layers that are terminated by terrace edges of the core. The crystal form of the shell MOF is heavily influenced by the lattice mismatch which hinders continuous spreading of the interfacial and subsequent shell layers on some facets. The results exemplify the crystal growth versatility of MOFs to accommodate large lattice mismatch, to house many more functional defects in a core-shell MOF than either of the component MOFs, and has broader implications for engineering lattice-mismatched core-shell materials in general.
doi_str_mv 10.1039/c9sc03131f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2355939413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355939413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-2974a9148d298f66d86e872314e944fe28e9954bf9916b093633ca59a859ed7d3</originalsourceid><addsrcrecordid>eNpdkE9LxDAQxYMorqxe_ABS8CJCNckkbecoi6uC4EH3XLLpdNu1bTTpuvjtjX8PzmVmmN88Ho-xY8EvBAe8tBgsBwGi3mEHkiuRZhpw92-WfMKOQljzWABCy3yfTUByrQH4AasWwxu1XTuskrGhpCfbmKENfeLqpDPj2FpK-7ib0TZUJda_h9F0ycq77dh8QiaxzlMaGuq6-B6PqfOrqGGT2puets4_H7K92nSBjn76lC3m10-z2_T-4eZudnWfWiXyMZWYK4NCFZXEos6yqsioyCUIRahUTbIgRK2WNaLIlhwhA7BGoyk0UpVXMGVn37ov3r1uKIxltG6jMTOQ24RSgtYIqARE9PQfunYbP0R3keKFECJDjNT5N2W9C8FTXb74tjf-vRS8_Iy_nOHj7Cv-eYRPfiQ3y56qP_Q3bPgA8Ot-qQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308111699</pqid></control><display><type>article</type><title>Unveiling the mechanism of lattice-mismatched crystal growth of a core-shell metal-organic framework</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Pambudi, Fajar I ; Anderson, Michael W ; Attfield, Martin P</creator><creatorcontrib>Pambudi, Fajar I ; Anderson, Michael W ; Attfield, Martin P</creatorcontrib><description>Determining the effect of severe lattice mismatch on the crystal growth mechanism and form of epitaxially grown materials is vital to understand and direct the form and function of such materials. Herein, we report the use of atomic force microscopy to reveal the growth of a shell metal-organic framework (MOF) on all faces of a core MOF that has similar , -lattice parameters but a ∼32% mismatch in the -lattice parameter. The work shows the mechanism through which the shell MOF overcomes the core terrace height mismatch depends on that mismatch being reduced before overgrowth of continuous shell layers can occur. This reduction is achieved a process of growth of non-continuous shell layers that are terminated by terrace edges of the core. The crystal form of the shell MOF is heavily influenced by the lattice mismatch which hinders continuous spreading of the interfacial and subsequent shell layers on some facets. The results exemplify the crystal growth versatility of MOFs to accommodate large lattice mismatch, to house many more functional defects in a core-shell MOF than either of the component MOFs, and has broader implications for engineering lattice-mismatched core-shell materials in general.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c9sc03131f</identifier><identifier>PMID: 32055330</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Atomic force microscopy ; Crystal defects ; Crystal growth ; Crystal lattices ; Crystals ; Epitaxial growth ; Lattice parameters ; Metal-organic frameworks ; Photomicrographs ; Raman spectra</subject><ispartof>Chemical science (Cambridge), 2019-11, Vol.10 (41), p.9571-9575</ispartof><rights>This journal is © The Royal Society of Chemistry 2019.</rights><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-2974a9148d298f66d86e872314e944fe28e9954bf9916b093633ca59a859ed7d3</citedby><cites>FETCH-LOGICAL-c417t-2974a9148d298f66d86e872314e944fe28e9954bf9916b093633ca59a859ed7d3</cites><orcidid>0000-0002-1443-8818 ; 0000-0002-8333-7826 ; 0000-0001-6508-1751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32055330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pambudi, Fajar I</creatorcontrib><creatorcontrib>Anderson, Michael W</creatorcontrib><creatorcontrib>Attfield, Martin P</creatorcontrib><title>Unveiling the mechanism of lattice-mismatched crystal growth of a core-shell metal-organic framework</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Determining the effect of severe lattice mismatch on the crystal growth mechanism and form of epitaxially grown materials is vital to understand and direct the form and function of such materials. Herein, we report the use of atomic force microscopy to reveal the growth of a shell metal-organic framework (MOF) on all faces of a core MOF that has similar , -lattice parameters but a ∼32% mismatch in the -lattice parameter. The work shows the mechanism through which the shell MOF overcomes the core terrace height mismatch depends on that mismatch being reduced before overgrowth of continuous shell layers can occur. This reduction is achieved a process of growth of non-continuous shell layers that are terminated by terrace edges of the core. The crystal form of the shell MOF is heavily influenced by the lattice mismatch which hinders continuous spreading of the interfacial and subsequent shell layers on some facets. The results exemplify the crystal growth versatility of MOFs to accommodate large lattice mismatch, to house many more functional defects in a core-shell MOF than either of the component MOFs, and has broader implications for engineering lattice-mismatched core-shell materials in general.</description><subject>Atomic force microscopy</subject><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Crystal lattices</subject><subject>Crystals</subject><subject>Epitaxial growth</subject><subject>Lattice parameters</subject><subject>Metal-organic frameworks</subject><subject>Photomicrographs</subject><subject>Raman spectra</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE9LxDAQxYMorqxe_ABS8CJCNckkbecoi6uC4EH3XLLpdNu1bTTpuvjtjX8PzmVmmN88Ho-xY8EvBAe8tBgsBwGi3mEHkiuRZhpw92-WfMKOQljzWABCy3yfTUByrQH4AasWwxu1XTuskrGhpCfbmKENfeLqpDPj2FpK-7ib0TZUJda_h9F0ycq77dh8QiaxzlMaGuq6-B6PqfOrqGGT2puets4_H7K92nSBjn76lC3m10-z2_T-4eZudnWfWiXyMZWYK4NCFZXEos6yqsioyCUIRahUTbIgRK2WNaLIlhwhA7BGoyk0UpVXMGVn37ov3r1uKIxltG6jMTOQ24RSgtYIqARE9PQfunYbP0R3keKFECJDjNT5N2W9C8FTXb74tjf-vRS8_Iy_nOHj7Cv-eYRPfiQ3y56qP_Q3bPgA8Ot-qQ</recordid><startdate>20191107</startdate><enddate>20191107</enddate><creator>Pambudi, Fajar I</creator><creator>Anderson, Michael W</creator><creator>Attfield, Martin P</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1443-8818</orcidid><orcidid>https://orcid.org/0000-0002-8333-7826</orcidid><orcidid>https://orcid.org/0000-0001-6508-1751</orcidid></search><sort><creationdate>20191107</creationdate><title>Unveiling the mechanism of lattice-mismatched crystal growth of a core-shell metal-organic framework</title><author>Pambudi, Fajar I ; Anderson, Michael W ; Attfield, Martin P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-2974a9148d298f66d86e872314e944fe28e9954bf9916b093633ca59a859ed7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic force microscopy</topic><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Crystal lattices</topic><topic>Crystals</topic><topic>Epitaxial growth</topic><topic>Lattice parameters</topic><topic>Metal-organic frameworks</topic><topic>Photomicrographs</topic><topic>Raman spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pambudi, Fajar I</creatorcontrib><creatorcontrib>Anderson, Michael W</creatorcontrib><creatorcontrib>Attfield, Martin P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pambudi, Fajar I</au><au>Anderson, Michael W</au><au>Attfield, Martin P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the mechanism of lattice-mismatched crystal growth of a core-shell metal-organic framework</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2019-11-07</date><risdate>2019</risdate><volume>10</volume><issue>41</issue><spage>9571</spage><epage>9575</epage><pages>9571-9575</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Determining the effect of severe lattice mismatch on the crystal growth mechanism and form of epitaxially grown materials is vital to understand and direct the form and function of such materials. Herein, we report the use of atomic force microscopy to reveal the growth of a shell metal-organic framework (MOF) on all faces of a core MOF that has similar , -lattice parameters but a ∼32% mismatch in the -lattice parameter. The work shows the mechanism through which the shell MOF overcomes the core terrace height mismatch depends on that mismatch being reduced before overgrowth of continuous shell layers can occur. This reduction is achieved a process of growth of non-continuous shell layers that are terminated by terrace edges of the core. The crystal form of the shell MOF is heavily influenced by the lattice mismatch which hinders continuous spreading of the interfacial and subsequent shell layers on some facets. The results exemplify the crystal growth versatility of MOFs to accommodate large lattice mismatch, to house many more functional defects in a core-shell MOF than either of the component MOFs, and has broader implications for engineering lattice-mismatched core-shell materials in general.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>32055330</pmid><doi>10.1039/c9sc03131f</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1443-8818</orcidid><orcidid>https://orcid.org/0000-0002-8333-7826</orcidid><orcidid>https://orcid.org/0000-0001-6508-1751</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2019-11, Vol.10 (41), p.9571-9575
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_miscellaneous_2355939413
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Atomic force microscopy
Crystal defects
Crystal growth
Crystal lattices
Crystals
Epitaxial growth
Lattice parameters
Metal-organic frameworks
Photomicrographs
Raman spectra
title Unveiling the mechanism of lattice-mismatched crystal growth of a core-shell metal-organic framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20mechanism%20of%20lattice-mismatched%20crystal%20growth%20of%20a%20core-shell%20metal-organic%20framework&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Pambudi,%20Fajar%20I&rft.date=2019-11-07&rft.volume=10&rft.issue=41&rft.spage=9571&rft.epage=9575&rft.pages=9571-9575&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c9sc03131f&rft_dat=%3Cproquest_cross%3E2355939413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308111699&rft_id=info:pmid/32055330&rfr_iscdi=true