Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling
Addressing the ongoing antibiotic crisis requires the discovery of compounds with novel mechanisms of action that are capable of treating drug-resistant infections 1 . Many antibiotics are sourced from specialized metabolites produced by bacteria, particularly those of the Actinomycetes family 2 . A...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-02, Vol.578 (7796), p.582-587 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 7796 |
container_start_page | 582 |
container_title | Nature (London) |
container_volume | 578 |
creator | Culp, Elizabeth J. Waglechner, Nicholas Wang, Wenliang Fiebig-Comyn, Aline A. Hsu, Yen-Pang Koteva, Kalinka Sychantha, David Coombes, Brian K. Van Nieuwenhze, Michael S. Brun, Yves V. Wright, Gerard D. |
description | Addressing the ongoing antibiotic crisis requires the discovery of compounds with novel mechanisms of action that are capable of treating drug-resistant infections
1
. Many antibiotics are sourced from specialized metabolites produced by bacteria, particularly those of the Actinomycetes family
2
. Although actinomycete extracts have traditionally been screened using activity-based platforms, this approach has become unfavourable owing to the frequent rediscovery of known compounds. Genome sequencing of actinomycetes reveals an untapped reservoir of biosynthetic gene clusters, but prioritization is required to predict which gene clusters may yield promising new chemical matter
2
. Here we make use of the phylogeny of biosynthetic genes along with the lack of known resistance determinants to predict divergent members of the glycopeptide family of antibiotics that are likely to possess new biological activities. Using these predictions, we uncovered two members of a new functional class of glycopeptide antibiotics—the known glycopeptide antibiotic complestatin and a newly discovered compound we call corbomycin—that have a novel mode of action. We show that by binding to peptidoglycan, complestatin and corbomycin block the action of autolysins—essential peptidoglycan hydrolases that are required for remodelling of the cell wall during growth. Corbomycin and complestatin have low levels of resistance development and are effective in reducing bacterial burden in a mouse model of skin MRSA infection.
The glycopeptide antibiotic-related compounds complestatin and corbomycin function by binding to peptidoglycan and blocking the action of autolysins—peptidoglycan hydrolase enzymes that remodel the cell wall during growth. |
doi_str_mv | 10.1038/s41586-020-1990-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2354739628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A626943563</galeid><sourcerecordid>A626943563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-1ed0185bb60465aa68755fa216ffc8596ac5ca848245cac506cff20cf9eddfd73</originalsourceid><addsrcrecordid>eNp1kl1rFDEUhoModq3-AG9k0Bu9SE0ySSZzWUptCwXFj-uQzcc0ZSaZJpni_nuzbLWurOTihHOe8_JyeAF4jdEJRq34mClmgkNEEMR9j2D_BKww7TikXHRPwQohIiASLT8CL3K-RQgx3NHn4Kgl9ceEWIEv5_dxXIqPAQ6LN9Y0xmcd723aNNE1KhS_9rF4nZtyo0rjw01tlGa2c_EmDuNGq9AkO0Vjx9GH4SV45tSY7auHegx-fDr_fnYJrz9fXJ2dXkPNOlYgtgZhwdZrjihnSlXDjDlFMHdOC9ZzpZlWggpCa9UMce0cQdr11hhnuvYYvN_pzineLTYXOVXj1YMKNi5ZkpbRru05ERV99w96G5cUqrtKdZTgrqf8kRrUaKUPLpak9FZUnnLCe9oy3lYKHqAGG2xSYwzW-dre498e4PXs7-Tf0MkBqD5jJ68Pqn7YW6hMsT_LoJac5dW3r_ss3rE6xZyTdXJOflJpIzGS2xjJXYxkjZHcxkj2defNw8WW9WTNn43fuakA2QG5jsJg0-NJ_6_6C6sUz3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374217946</pqid></control><display><type>article</type><title>Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Culp, Elizabeth J. ; Waglechner, Nicholas ; Wang, Wenliang ; Fiebig-Comyn, Aline A. ; Hsu, Yen-Pang ; Koteva, Kalinka ; Sychantha, David ; Coombes, Brian K. ; Van Nieuwenhze, Michael S. ; Brun, Yves V. ; Wright, Gerard D.</creator><creatorcontrib>Culp, Elizabeth J. ; Waglechner, Nicholas ; Wang, Wenliang ; Fiebig-Comyn, Aline A. ; Hsu, Yen-Pang ; Koteva, Kalinka ; Sychantha, David ; Coombes, Brian K. ; Van Nieuwenhze, Michael S. ; Brun, Yves V. ; Wright, Gerard D.</creatorcontrib><description>Addressing the ongoing antibiotic crisis requires the discovery of compounds with novel mechanisms of action that are capable of treating drug-resistant infections
1
. Many antibiotics are sourced from specialized metabolites produced by bacteria, particularly those of the Actinomycetes family
2
. Although actinomycete extracts have traditionally been screened using activity-based platforms, this approach has become unfavourable owing to the frequent rediscovery of known compounds. Genome sequencing of actinomycetes reveals an untapped reservoir of biosynthetic gene clusters, but prioritization is required to predict which gene clusters may yield promising new chemical matter
2
. Here we make use of the phylogeny of biosynthetic genes along with the lack of known resistance determinants to predict divergent members of the glycopeptide family of antibiotics that are likely to possess new biological activities. Using these predictions, we uncovered two members of a new functional class of glycopeptide antibiotics—the known glycopeptide antibiotic complestatin and a newly discovered compound we call corbomycin—that have a novel mode of action. We show that by binding to peptidoglycan, complestatin and corbomycin block the action of autolysins—essential peptidoglycan hydrolases that are required for remodelling of the cell wall during growth. Corbomycin and complestatin have low levels of resistance development and are effective in reducing bacterial burden in a mouse model of skin MRSA infection.
The glycopeptide antibiotic-related compounds complestatin and corbomycin function by binding to peptidoglycan and blocking the action of autolysins—peptidoglycan hydrolase enzymes that remodel the cell wall during growth.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-020-1990-9</identifier><identifier>PMID: 32051588</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/63 ; 140/131 ; 45/23 ; 631/154/555 ; 631/326 ; 631/326/22/1290 ; 64/60 ; 692/699/255/1318 ; 82/16 ; Actinobacteria - chemistry ; Actinobacteria - genetics ; Actinobacteria - metabolism ; Actinomycetes ; Animals ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - metabolism ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Autolysins ; Biological activity ; Biosynthesis ; Biosynthetic Pathways - genetics ; Cell Wall - metabolism ; Cell walls ; Chlorophenols - chemistry ; Chlorophenols - metabolism ; Chlorophenols - pharmacology ; Disease Models, Animal ; Divergence ; Drug Discovery ; Drug resistance ; Drug Resistance, Microbial - drug effects ; Drug Resistance, Microbial - genetics ; Fatty acids ; Female ; Gene clusters ; Gene sequencing ; Genes ; Genomes ; Glycopeptides ; Health aspects ; Humanities and Social Sciences ; Metabolism ; Metabolites ; Methicillin-Resistant Staphylococcus aureus - drug effects ; Methods ; Mice ; Microbial Sensitivity Tests ; Mode of action ; multidisciplinary ; Multigene Family ; N-Acetylmuramoyl-L-alanine Amidase - antagonists & inhibitors ; Peptides ; Peptides, Cyclic - chemistry ; Peptides, Cyclic - metabolism ; Peptides, Cyclic - pharmacology ; Peptidoglycan - drug effects ; Peptidoglycan - metabolism ; Peptidoglycans ; Phylogenetics ; Phylogeny ; Science ; Science (multidisciplinary) ; Skin - microbiology ; Staphylococcal Infections - microbiology</subject><ispartof>Nature (London), 2020-02, Vol.578 (7796), p.582-587</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 27, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-1ed0185bb60465aa68755fa216ffc8596ac5ca848245cac506cff20cf9eddfd73</citedby><cites>FETCH-LOGICAL-c575t-1ed0185bb60465aa68755fa216ffc8596ac5ca848245cac506cff20cf9eddfd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-020-1990-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-020-1990-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32051588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Culp, Elizabeth J.</creatorcontrib><creatorcontrib>Waglechner, Nicholas</creatorcontrib><creatorcontrib>Wang, Wenliang</creatorcontrib><creatorcontrib>Fiebig-Comyn, Aline A.</creatorcontrib><creatorcontrib>Hsu, Yen-Pang</creatorcontrib><creatorcontrib>Koteva, Kalinka</creatorcontrib><creatorcontrib>Sychantha, David</creatorcontrib><creatorcontrib>Coombes, Brian K.</creatorcontrib><creatorcontrib>Van Nieuwenhze, Michael S.</creatorcontrib><creatorcontrib>Brun, Yves V.</creatorcontrib><creatorcontrib>Wright, Gerard D.</creatorcontrib><title>Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Addressing the ongoing antibiotic crisis requires the discovery of compounds with novel mechanisms of action that are capable of treating drug-resistant infections
1
. Many antibiotics are sourced from specialized metabolites produced by bacteria, particularly those of the Actinomycetes family
2
. Although actinomycete extracts have traditionally been screened using activity-based platforms, this approach has become unfavourable owing to the frequent rediscovery of known compounds. Genome sequencing of actinomycetes reveals an untapped reservoir of biosynthetic gene clusters, but prioritization is required to predict which gene clusters may yield promising new chemical matter
2
. Here we make use of the phylogeny of biosynthetic genes along with the lack of known resistance determinants to predict divergent members of the glycopeptide family of antibiotics that are likely to possess new biological activities. Using these predictions, we uncovered two members of a new functional class of glycopeptide antibiotics—the known glycopeptide antibiotic complestatin and a newly discovered compound we call corbomycin—that have a novel mode of action. We show that by binding to peptidoglycan, complestatin and corbomycin block the action of autolysins—essential peptidoglycan hydrolases that are required for remodelling of the cell wall during growth. Corbomycin and complestatin have low levels of resistance development and are effective in reducing bacterial burden in a mouse model of skin MRSA infection.
The glycopeptide antibiotic-related compounds complestatin and corbomycin function by binding to peptidoglycan and blocking the action of autolysins—peptidoglycan hydrolase enzymes that remodel the cell wall during growth.</description><subject>14/63</subject><subject>140/131</subject><subject>45/23</subject><subject>631/154/555</subject><subject>631/326</subject><subject>631/326/22/1290</subject><subject>64/60</subject><subject>692/699/255/1318</subject><subject>82/16</subject><subject>Actinobacteria - chemistry</subject><subject>Actinobacteria - genetics</subject><subject>Actinobacteria - metabolism</subject><subject>Actinomycetes</subject><subject>Animals</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - metabolism</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Autolysins</subject><subject>Biological activity</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - genetics</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Chlorophenols - chemistry</subject><subject>Chlorophenols - metabolism</subject><subject>Chlorophenols - pharmacology</subject><subject>Disease Models, Animal</subject><subject>Divergence</subject><subject>Drug Discovery</subject><subject>Drug resistance</subject><subject>Drug Resistance, Microbial - drug effects</subject><subject>Drug Resistance, Microbial - genetics</subject><subject>Fatty acids</subject><subject>Female</subject><subject>Gene clusters</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Glycopeptides</subject><subject>Health aspects</subject><subject>Humanities and Social Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methicillin-Resistant Staphylococcus aureus - drug effects</subject><subject>Methods</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests</subject><subject>Mode of action</subject><subject>multidisciplinary</subject><subject>Multigene Family</subject><subject>N-Acetylmuramoyl-L-alanine Amidase - antagonists & inhibitors</subject><subject>Peptides</subject><subject>Peptides, Cyclic - chemistry</subject><subject>Peptides, Cyclic - metabolism</subject><subject>Peptides, Cyclic - pharmacology</subject><subject>Peptidoglycan - drug effects</subject><subject>Peptidoglycan - metabolism</subject><subject>Peptidoglycans</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Skin - microbiology</subject><subject>Staphylococcal Infections - microbiology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kl1rFDEUhoModq3-AG9k0Bu9SE0ySSZzWUptCwXFj-uQzcc0ZSaZJpni_nuzbLWurOTihHOe8_JyeAF4jdEJRq34mClmgkNEEMR9j2D_BKww7TikXHRPwQohIiASLT8CL3K-RQgx3NHn4Kgl9ceEWIEv5_dxXIqPAQ6LN9Y0xmcd723aNNE1KhS_9rF4nZtyo0rjw01tlGa2c_EmDuNGq9AkO0Vjx9GH4SV45tSY7auHegx-fDr_fnYJrz9fXJ2dXkPNOlYgtgZhwdZrjihnSlXDjDlFMHdOC9ZzpZlWggpCa9UMce0cQdr11hhnuvYYvN_pzineLTYXOVXj1YMKNi5ZkpbRru05ERV99w96G5cUqrtKdZTgrqf8kRrUaKUPLpak9FZUnnLCe9oy3lYKHqAGG2xSYwzW-dre498e4PXs7-Tf0MkBqD5jJ68Pqn7YW6hMsT_LoJac5dW3r_ss3rE6xZyTdXJOflJpIzGS2xjJXYxkjZHcxkj2defNw8WW9WTNn43fuakA2QG5jsJg0-NJ_6_6C6sUz3w</recordid><startdate>20200227</startdate><enddate>20200227</enddate><creator>Culp, Elizabeth J.</creator><creator>Waglechner, Nicholas</creator><creator>Wang, Wenliang</creator><creator>Fiebig-Comyn, Aline A.</creator><creator>Hsu, Yen-Pang</creator><creator>Koteva, Kalinka</creator><creator>Sychantha, David</creator><creator>Coombes, Brian K.</creator><creator>Van Nieuwenhze, Michael S.</creator><creator>Brun, Yves V.</creator><creator>Wright, Gerard D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20200227</creationdate><title>Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling</title><author>Culp, Elizabeth J. ; Waglechner, Nicholas ; Wang, Wenliang ; Fiebig-Comyn, Aline A. ; Hsu, Yen-Pang ; Koteva, Kalinka ; Sychantha, David ; Coombes, Brian K. ; Van Nieuwenhze, Michael S. ; Brun, Yves V. ; Wright, Gerard D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-1ed0185bb60465aa68755fa216ffc8596ac5ca848245cac506cff20cf9eddfd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>14/63</topic><topic>140/131</topic><topic>45/23</topic><topic>631/154/555</topic><topic>631/326</topic><topic>631/326/22/1290</topic><topic>64/60</topic><topic>692/699/255/1318</topic><topic>82/16</topic><topic>Actinobacteria - chemistry</topic><topic>Actinobacteria - genetics</topic><topic>Actinobacteria - metabolism</topic><topic>Actinomycetes</topic><topic>Animals</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - metabolism</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Autolysins</topic><topic>Biological activity</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - genetics</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Chlorophenols - chemistry</topic><topic>Chlorophenols - metabolism</topic><topic>Chlorophenols - pharmacology</topic><topic>Disease Models, Animal</topic><topic>Divergence</topic><topic>Drug Discovery</topic><topic>Drug resistance</topic><topic>Drug Resistance, Microbial - drug effects</topic><topic>Drug Resistance, Microbial - genetics</topic><topic>Fatty acids</topic><topic>Female</topic><topic>Gene clusters</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Glycopeptides</topic><topic>Health aspects</topic><topic>Humanities and Social Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methicillin-Resistant Staphylococcus aureus - drug effects</topic><topic>Methods</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests</topic><topic>Mode of action</topic><topic>multidisciplinary</topic><topic>Multigene Family</topic><topic>N-Acetylmuramoyl-L-alanine Amidase - antagonists & inhibitors</topic><topic>Peptides</topic><topic>Peptides, Cyclic - chemistry</topic><topic>Peptides, Cyclic - metabolism</topic><topic>Peptides, Cyclic - pharmacology</topic><topic>Peptidoglycan - drug effects</topic><topic>Peptidoglycan - metabolism</topic><topic>Peptidoglycans</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Skin - microbiology</topic><topic>Staphylococcal Infections - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Culp, Elizabeth J.</creatorcontrib><creatorcontrib>Waglechner, Nicholas</creatorcontrib><creatorcontrib>Wang, Wenliang</creatorcontrib><creatorcontrib>Fiebig-Comyn, Aline A.</creatorcontrib><creatorcontrib>Hsu, Yen-Pang</creatorcontrib><creatorcontrib>Koteva, Kalinka</creatorcontrib><creatorcontrib>Sychantha, David</creatorcontrib><creatorcontrib>Coombes, Brian K.</creatorcontrib><creatorcontrib>Van Nieuwenhze, Michael S.</creatorcontrib><creatorcontrib>Brun, Yves V.</creatorcontrib><creatorcontrib>Wright, Gerard D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Culp, Elizabeth J.</au><au>Waglechner, Nicholas</au><au>Wang, Wenliang</au><au>Fiebig-Comyn, Aline A.</au><au>Hsu, Yen-Pang</au><au>Koteva, Kalinka</au><au>Sychantha, David</au><au>Coombes, Brian K.</au><au>Van Nieuwenhze, Michael S.</au><au>Brun, Yves V.</au><au>Wright, Gerard D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-02-27</date><risdate>2020</risdate><volume>578</volume><issue>7796</issue><spage>582</spage><epage>587</epage><pages>582-587</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Addressing the ongoing antibiotic crisis requires the discovery of compounds with novel mechanisms of action that are capable of treating drug-resistant infections
1
. Many antibiotics are sourced from specialized metabolites produced by bacteria, particularly those of the Actinomycetes family
2
. Although actinomycete extracts have traditionally been screened using activity-based platforms, this approach has become unfavourable owing to the frequent rediscovery of known compounds. Genome sequencing of actinomycetes reveals an untapped reservoir of biosynthetic gene clusters, but prioritization is required to predict which gene clusters may yield promising new chemical matter
2
. Here we make use of the phylogeny of biosynthetic genes along with the lack of known resistance determinants to predict divergent members of the glycopeptide family of antibiotics that are likely to possess new biological activities. Using these predictions, we uncovered two members of a new functional class of glycopeptide antibiotics—the known glycopeptide antibiotic complestatin and a newly discovered compound we call corbomycin—that have a novel mode of action. We show that by binding to peptidoglycan, complestatin and corbomycin block the action of autolysins—essential peptidoglycan hydrolases that are required for remodelling of the cell wall during growth. Corbomycin and complestatin have low levels of resistance development and are effective in reducing bacterial burden in a mouse model of skin MRSA infection.
The glycopeptide antibiotic-related compounds complestatin and corbomycin function by binding to peptidoglycan and blocking the action of autolysins—peptidoglycan hydrolase enzymes that remodel the cell wall during growth.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32051588</pmid><doi>10.1038/s41586-020-1990-9</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2020-02, Vol.578 (7796), p.582-587 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2354739628 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 14/63 140/131 45/23 631/154/555 631/326 631/326/22/1290 64/60 692/699/255/1318 82/16 Actinobacteria - chemistry Actinobacteria - genetics Actinobacteria - metabolism Actinomycetes Animals Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - metabolism Anti-Bacterial Agents - pharmacology Antibiotics Autolysins Biological activity Biosynthesis Biosynthetic Pathways - genetics Cell Wall - metabolism Cell walls Chlorophenols - chemistry Chlorophenols - metabolism Chlorophenols - pharmacology Disease Models, Animal Divergence Drug Discovery Drug resistance Drug Resistance, Microbial - drug effects Drug Resistance, Microbial - genetics Fatty acids Female Gene clusters Gene sequencing Genes Genomes Glycopeptides Health aspects Humanities and Social Sciences Metabolism Metabolites Methicillin-Resistant Staphylococcus aureus - drug effects Methods Mice Microbial Sensitivity Tests Mode of action multidisciplinary Multigene Family N-Acetylmuramoyl-L-alanine Amidase - antagonists & inhibitors Peptides Peptides, Cyclic - chemistry Peptides, Cyclic - metabolism Peptides, Cyclic - pharmacology Peptidoglycan - drug effects Peptidoglycan - metabolism Peptidoglycans Phylogenetics Phylogeny Science Science (multidisciplinary) Skin - microbiology Staphylococcal Infections - microbiology |
title | Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution-guided%20discovery%20of%20antibiotics%20that%20inhibit%20peptidoglycan%20remodelling&rft.jtitle=Nature%20(London)&rft.au=Culp,%20Elizabeth%20J.&rft.date=2020-02-27&rft.volume=578&rft.issue=7796&rft.spage=582&rft.epage=587&rft.pages=582-587&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-020-1990-9&rft_dat=%3Cgale_proqu%3EA626943563%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374217946&rft_id=info:pmid/32051588&rft_galeid=A626943563&rfr_iscdi=true |