Reduction of dimensionality in Bayesian nonlinear regression with a pharmacokinetic application
Application of Bayes's theorem to the analysis of nonlinear regression models is limited by numerical problems associated with calculation of integrals of functions of several variables. For k-parameter models that are linear in l of the parameters, a dimension-reduction procedure is described...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences 1982, Vol.59 (1), p.47-56 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | Mathematical biosciences |
container_volume | 59 |
creator | Katz, D. Schumitzky, A. Azen, S.P. |
description | Application of Bayes's theorem to the analysis of nonlinear regression models is limited by numerical problems associated with calculation of integrals of functions of several variables. For
k-parameter models that are linear in
l of the parameters, a dimension-reduction procedure is described for factoring the posterior distribution into the product of a multivariate normal density and a function of
k-
l nonlinear parameters. Integrals can then be calculated with (
k-
l)-dimensional numerical integration. A four-parameter, two-compartment pharmacokinetic model of lidocaine disposition is analyzed using a change of variables in order to obtain a model that is linear in two parameters. It is shown that a Bayesian analysis, with reduction of dimensionality, applied to this model produces appropriate results with reasonable CPU-time requirements. |
doi_str_mv | 10.1016/0025-5564(82)90108-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23546947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0025556482901080</els_id><sourcerecordid>23546947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-a8eb8f847e563aaf22d267fec4a00a94493b99cd9503570129181e1bb569f55d3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-Aw85iR6qSZq0yUXQxS8QBNFzmE2nbrSb1qSr7L-3dcWjnoaB532ZeQg55OyUM16cMSZUplQhj7U4MYwznbEtMuG6NFnOc7lNJr_ILtlL6ZUxXnJeTIh9xGrlet8G2ta08ksMaVig8f2a-kAvYY3JQ6ChDY0PCJFGfImYRop--n5BgXYLiEtw7dsA9N5R6LrGOxhb98lODU3Cg585Jc_XV0-z2-z-4eZudnGfOaF5n4HGua61LFEVOUAtRCWKskYngTEwUpp8boyrjGK5KhkXhmuOfD5XhamVqvIpOdr0drF9X2Hq7dInh00DAdtVsiJXsjCy_BfkSsncDFdMidyALrYpRaxtF_0S4tpyZkftdnRqR6dWC_ut3bIhdr6J4fDth8dok_MYHFY-outt1fq_C74AL7mKig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15543956</pqid></control><display><type>article</type><title>Reduction of dimensionality in Bayesian nonlinear regression with a pharmacokinetic application</title><source>Access via ScienceDirect (Elsevier)</source><creator>Katz, D. ; Schumitzky, A. ; Azen, S.P.</creator><creatorcontrib>Katz, D. ; Schumitzky, A. ; Azen, S.P.</creatorcontrib><description>Application of Bayes's theorem to the analysis of nonlinear regression models is limited by numerical problems associated with calculation of integrals of functions of several variables. For
k-parameter models that are linear in
l of the parameters, a dimension-reduction procedure is described for factoring the posterior distribution into the product of a multivariate normal density and a function of
k-
l nonlinear parameters. Integrals can then be calculated with (
k-
l)-dimensional numerical integration. A four-parameter, two-compartment pharmacokinetic model of lidocaine disposition is analyzed using a change of variables in order to obtain a model that is linear in two parameters. It is shown that a Bayesian analysis, with reduction of dimensionality, applied to this model produces appropriate results with reasonable CPU-time requirements.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/0025-5564(82)90108-0</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Bayesian analysis ; lidocaine ; pharmacokinetics ; regression analysis ; statistical analysis</subject><ispartof>Mathematical biosciences, 1982, Vol.59 (1), p.47-56</ispartof><rights>1982</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-a8eb8f847e563aaf22d267fec4a00a94493b99cd9503570129181e1bb569f55d3</citedby><cites>FETCH-LOGICAL-c281t-a8eb8f847e563aaf22d267fec4a00a94493b99cd9503570129181e1bb569f55d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0025-5564(82)90108-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Katz, D.</creatorcontrib><creatorcontrib>Schumitzky, A.</creatorcontrib><creatorcontrib>Azen, S.P.</creatorcontrib><title>Reduction of dimensionality in Bayesian nonlinear regression with a pharmacokinetic application</title><title>Mathematical biosciences</title><description>Application of Bayes's theorem to the analysis of nonlinear regression models is limited by numerical problems associated with calculation of integrals of functions of several variables. For
k-parameter models that are linear in
l of the parameters, a dimension-reduction procedure is described for factoring the posterior distribution into the product of a multivariate normal density and a function of
k-
l nonlinear parameters. Integrals can then be calculated with (
k-
l)-dimensional numerical integration. A four-parameter, two-compartment pharmacokinetic model of lidocaine disposition is analyzed using a change of variables in order to obtain a model that is linear in two parameters. It is shown that a Bayesian analysis, with reduction of dimensionality, applied to this model produces appropriate results with reasonable CPU-time requirements.</description><subject>Bayesian analysis</subject><subject>lidocaine</subject><subject>pharmacokinetics</subject><subject>regression analysis</subject><subject>statistical analysis</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-Aw85iR6qSZq0yUXQxS8QBNFzmE2nbrSb1qSr7L-3dcWjnoaB532ZeQg55OyUM16cMSZUplQhj7U4MYwznbEtMuG6NFnOc7lNJr_ILtlL6ZUxXnJeTIh9xGrlet8G2ta08ksMaVig8f2a-kAvYY3JQ6ChDY0PCJFGfImYRop--n5BgXYLiEtw7dsA9N5R6LrGOxhb98lODU3Cg585Jc_XV0-z2-z-4eZudnGfOaF5n4HGua61LFEVOUAtRCWKskYngTEwUpp8boyrjGK5KhkXhmuOfD5XhamVqvIpOdr0drF9X2Hq7dInh00DAdtVsiJXsjCy_BfkSsncDFdMidyALrYpRaxtF_0S4tpyZkftdnRqR6dWC_ut3bIhdr6J4fDth8dok_MYHFY-outt1fq_C74AL7mKig</recordid><startdate>1982</startdate><enddate>1982</enddate><creator>Katz, D.</creator><creator>Schumitzky, A.</creator><creator>Azen, S.P.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1982</creationdate><title>Reduction of dimensionality in Bayesian nonlinear regression with a pharmacokinetic application</title><author>Katz, D. ; Schumitzky, A. ; Azen, S.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-a8eb8f847e563aaf22d267fec4a00a94493b99cd9503570129181e1bb569f55d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Bayesian analysis</topic><topic>lidocaine</topic><topic>pharmacokinetics</topic><topic>regression analysis</topic><topic>statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, D.</creatorcontrib><creatorcontrib>Schumitzky, A.</creatorcontrib><creatorcontrib>Azen, S.P.</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, D.</au><au>Schumitzky, A.</au><au>Azen, S.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of dimensionality in Bayesian nonlinear regression with a pharmacokinetic application</atitle><jtitle>Mathematical biosciences</jtitle><date>1982</date><risdate>1982</risdate><volume>59</volume><issue>1</issue><spage>47</spage><epage>56</epage><pages>47-56</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>Application of Bayes's theorem to the analysis of nonlinear regression models is limited by numerical problems associated with calculation of integrals of functions of several variables. For
k-parameter models that are linear in
l of the parameters, a dimension-reduction procedure is described for factoring the posterior distribution into the product of a multivariate normal density and a function of
k-
l nonlinear parameters. Integrals can then be calculated with (
k-
l)-dimensional numerical integration. A four-parameter, two-compartment pharmacokinetic model of lidocaine disposition is analyzed using a change of variables in order to obtain a model that is linear in two parameters. It is shown that a Bayesian analysis, with reduction of dimensionality, applied to this model produces appropriate results with reasonable CPU-time requirements.</abstract><pub>Elsevier Inc</pub><doi>10.1016/0025-5564(82)90108-0</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5564 |
ispartof | Mathematical biosciences, 1982, Vol.59 (1), p.47-56 |
issn | 0025-5564 1879-3134 |
language | eng |
recordid | cdi_proquest_miscellaneous_23546947 |
source | Access via ScienceDirect (Elsevier) |
subjects | Bayesian analysis lidocaine pharmacokinetics regression analysis statistical analysis |
title | Reduction of dimensionality in Bayesian nonlinear regression with a pharmacokinetic application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20dimensionality%20in%20Bayesian%20nonlinear%20regression%20with%20a%20pharmacokinetic%20application&rft.jtitle=Mathematical%20biosciences&rft.au=Katz,%20D.&rft.date=1982&rft.volume=59&rft.issue=1&rft.spage=47&rft.epage=56&rft.pages=47-56&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/0025-5564(82)90108-0&rft_dat=%3Cproquest_cross%3E23546947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15543956&rft_id=info:pmid/&rft_els_id=0025556482901080&rfr_iscdi=true |