Reduction of dimensionality in Bayesian nonlinear regression with a pharmacokinetic application

Application of Bayes's theorem to the analysis of nonlinear regression models is limited by numerical problems associated with calculation of integrals of functions of several variables. For k-parameter models that are linear in l of the parameters, a dimension-reduction procedure is described...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 1982, Vol.59 (1), p.47-56
Hauptverfasser: Katz, D., Schumitzky, A., Azen, S.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 47
container_title Mathematical biosciences
container_volume 59
creator Katz, D.
Schumitzky, A.
Azen, S.P.
description Application of Bayes's theorem to the analysis of nonlinear regression models is limited by numerical problems associated with calculation of integrals of functions of several variables. For k-parameter models that are linear in l of the parameters, a dimension-reduction procedure is described for factoring the posterior distribution into the product of a multivariate normal density and a function of k- l nonlinear parameters. Integrals can then be calculated with ( k- l)-dimensional numerical integration. A four-parameter, two-compartment pharmacokinetic model of lidocaine disposition is analyzed using a change of variables in order to obtain a model that is linear in two parameters. It is shown that a Bayesian analysis, with reduction of dimensionality, applied to this model produces appropriate results with reasonable CPU-time requirements.
doi_str_mv 10.1016/0025-5564(82)90108-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23546947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0025556482901080</els_id><sourcerecordid>23546947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-a8eb8f847e563aaf22d267fec4a00a94493b99cd9503570129181e1bb569f55d3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-Aw85iR6qSZq0yUXQxS8QBNFzmE2nbrSb1qSr7L-3dcWjnoaB532ZeQg55OyUM16cMSZUplQhj7U4MYwznbEtMuG6NFnOc7lNJr_ILtlL6ZUxXnJeTIh9xGrlet8G2ta08ksMaVig8f2a-kAvYY3JQ6ChDY0PCJFGfImYRop--n5BgXYLiEtw7dsA9N5R6LrGOxhb98lODU3Cg585Jc_XV0-z2-z-4eZudnGfOaF5n4HGua61LFEVOUAtRCWKskYngTEwUpp8boyrjGK5KhkXhmuOfD5XhamVqvIpOdr0drF9X2Hq7dInh00DAdtVsiJXsjCy_BfkSsncDFdMidyALrYpRaxtF_0S4tpyZkftdnRqR6dWC_ut3bIhdr6J4fDth8dok_MYHFY-outt1fq_C74AL7mKig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15543956</pqid></control><display><type>article</type><title>Reduction of dimensionality in Bayesian nonlinear regression with a pharmacokinetic application</title><source>Access via ScienceDirect (Elsevier)</source><creator>Katz, D. ; Schumitzky, A. ; Azen, S.P.</creator><creatorcontrib>Katz, D. ; Schumitzky, A. ; Azen, S.P.</creatorcontrib><description>Application of Bayes's theorem to the analysis of nonlinear regression models is limited by numerical problems associated with calculation of integrals of functions of several variables. For k-parameter models that are linear in l of the parameters, a dimension-reduction procedure is described for factoring the posterior distribution into the product of a multivariate normal density and a function of k- l nonlinear parameters. Integrals can then be calculated with ( k- l)-dimensional numerical integration. A four-parameter, two-compartment pharmacokinetic model of lidocaine disposition is analyzed using a change of variables in order to obtain a model that is linear in two parameters. It is shown that a Bayesian analysis, with reduction of dimensionality, applied to this model produces appropriate results with reasonable CPU-time requirements.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/0025-5564(82)90108-0</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Bayesian analysis ; lidocaine ; pharmacokinetics ; regression analysis ; statistical analysis</subject><ispartof>Mathematical biosciences, 1982, Vol.59 (1), p.47-56</ispartof><rights>1982</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-a8eb8f847e563aaf22d267fec4a00a94493b99cd9503570129181e1bb569f55d3</citedby><cites>FETCH-LOGICAL-c281t-a8eb8f847e563aaf22d267fec4a00a94493b99cd9503570129181e1bb569f55d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0025-5564(82)90108-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Katz, D.</creatorcontrib><creatorcontrib>Schumitzky, A.</creatorcontrib><creatorcontrib>Azen, S.P.</creatorcontrib><title>Reduction of dimensionality in Bayesian nonlinear regression with a pharmacokinetic application</title><title>Mathematical biosciences</title><description>Application of Bayes's theorem to the analysis of nonlinear regression models is limited by numerical problems associated with calculation of integrals of functions of several variables. For k-parameter models that are linear in l of the parameters, a dimension-reduction procedure is described for factoring the posterior distribution into the product of a multivariate normal density and a function of k- l nonlinear parameters. Integrals can then be calculated with ( k- l)-dimensional numerical integration. A four-parameter, two-compartment pharmacokinetic model of lidocaine disposition is analyzed using a change of variables in order to obtain a model that is linear in two parameters. It is shown that a Bayesian analysis, with reduction of dimensionality, applied to this model produces appropriate results with reasonable CPU-time requirements.</description><subject>Bayesian analysis</subject><subject>lidocaine</subject><subject>pharmacokinetics</subject><subject>regression analysis</subject><subject>statistical analysis</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-Aw85iR6qSZq0yUXQxS8QBNFzmE2nbrSb1qSr7L-3dcWjnoaB532ZeQg55OyUM16cMSZUplQhj7U4MYwznbEtMuG6NFnOc7lNJr_ILtlL6ZUxXnJeTIh9xGrlet8G2ta08ksMaVig8f2a-kAvYY3JQ6ChDY0PCJFGfImYRop--n5BgXYLiEtw7dsA9N5R6LrGOxhb98lODU3Cg585Jc_XV0-z2-z-4eZudnGfOaF5n4HGua61LFEVOUAtRCWKskYngTEwUpp8boyrjGK5KhkXhmuOfD5XhamVqvIpOdr0drF9X2Hq7dInh00DAdtVsiJXsjCy_BfkSsncDFdMidyALrYpRaxtF_0S4tpyZkftdnRqR6dWC_ut3bIhdr6J4fDth8dok_MYHFY-outt1fq_C74AL7mKig</recordid><startdate>1982</startdate><enddate>1982</enddate><creator>Katz, D.</creator><creator>Schumitzky, A.</creator><creator>Azen, S.P.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1982</creationdate><title>Reduction of dimensionality in Bayesian nonlinear regression with a pharmacokinetic application</title><author>Katz, D. ; Schumitzky, A. ; Azen, S.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-a8eb8f847e563aaf22d267fec4a00a94493b99cd9503570129181e1bb569f55d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Bayesian analysis</topic><topic>lidocaine</topic><topic>pharmacokinetics</topic><topic>regression analysis</topic><topic>statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, D.</creatorcontrib><creatorcontrib>Schumitzky, A.</creatorcontrib><creatorcontrib>Azen, S.P.</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, D.</au><au>Schumitzky, A.</au><au>Azen, S.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of dimensionality in Bayesian nonlinear regression with a pharmacokinetic application</atitle><jtitle>Mathematical biosciences</jtitle><date>1982</date><risdate>1982</risdate><volume>59</volume><issue>1</issue><spage>47</spage><epage>56</epage><pages>47-56</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>Application of Bayes's theorem to the analysis of nonlinear regression models is limited by numerical problems associated with calculation of integrals of functions of several variables. For k-parameter models that are linear in l of the parameters, a dimension-reduction procedure is described for factoring the posterior distribution into the product of a multivariate normal density and a function of k- l nonlinear parameters. Integrals can then be calculated with ( k- l)-dimensional numerical integration. A four-parameter, two-compartment pharmacokinetic model of lidocaine disposition is analyzed using a change of variables in order to obtain a model that is linear in two parameters. It is shown that a Bayesian analysis, with reduction of dimensionality, applied to this model produces appropriate results with reasonable CPU-time requirements.</abstract><pub>Elsevier Inc</pub><doi>10.1016/0025-5564(82)90108-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5564
ispartof Mathematical biosciences, 1982, Vol.59 (1), p.47-56
issn 0025-5564
1879-3134
language eng
recordid cdi_proquest_miscellaneous_23546947
source Access via ScienceDirect (Elsevier)
subjects Bayesian analysis
lidocaine
pharmacokinetics
regression analysis
statistical analysis
title Reduction of dimensionality in Bayesian nonlinear regression with a pharmacokinetic application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20dimensionality%20in%20Bayesian%20nonlinear%20regression%20with%20a%20pharmacokinetic%20application&rft.jtitle=Mathematical%20biosciences&rft.au=Katz,%20D.&rft.date=1982&rft.volume=59&rft.issue=1&rft.spage=47&rft.epage=56&rft.pages=47-56&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/0025-5564(82)90108-0&rft_dat=%3Cproquest_cross%3E23546947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15543956&rft_id=info:pmid/&rft_els_id=0025556482901080&rfr_iscdi=true