Arginine-Enriched Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation

Low-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2020-03, Vol.77 (6), p.1237-1250.e4
Hauptverfasser: Greig, Jamie A., Nguyen, Tu Anh, Lee, Michelle, Holehouse, Alex S., Posey, Ammon E., Pappu, Rohit V., Jedd, Gregory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1250.e4
container_issue 6
container_start_page 1237
container_title Molecular cell
container_volume 77
creator Greig, Jamie A.
Nguyen, Tu Anh
Lee, Michelle
Holehouse, Alex S.
Posey, Ammon E.
Pappu, Rohit V.
Jedd, Gregory
description Low-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle condensation. Proteins composed exclusively of arginine-aspartic acid dipeptide repeats undergo length-dependent condensation and speckle incorporation. Substituting arginine with lysine in synthetic and natural speckle-associated MCDs abolishes these activities, identifying a key role for multivalent contacts through arginine’s guanidinium ion. MCDs can synergize with a speckle-associated RNA recognition motif to promote speckle specificity and residence. MCD behavior is tunable through net-charge: increasing negative charge abolishes condensation and speckle incorporation. Contrastingly, increasing positive charge through arginine leads to enhanced condensation, speckle enlargement, decreased splicing factor mobility, and defective mRNA export. Together, these results identify key sequence determinants of MCD-promoted speckle condensation and link the dynamic material properties of speckles with function in mRNA processing. [Display omitted] •Arginine-enriched mixed-charge domains form condensates and drive speckle assembly•Substituting arginine with lysine abolishes mixed-charge domain (MCD) activity•MCDs synergize with RNA-binding domains to promote speckle residence•Increasing speckle cohesion through MCD expression leads to defects in mRNA export Greig et al. analyze natural and synthetic low-complexity mixed-charge domains (MCDs) to identify key sequence features influencing nuclear speckle condensation and function. Increasing negative charge abolishes MCD activity, whereas increasing positive charge through arginine, but not lysine, leads to increased speckle cohesion, enlarged speckles, and defects in mRNA export.
doi_str_mv 10.1016/j.molcel.2020.01.025
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2354175512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520300460</els_id><sourcerecordid>2354175512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-187c4fc4e8cc907f688d66a6aff5499ec3a5c5374e16aeacaa265dcdaacfad33</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiMEoqXwDxDKEQkljB07Ti6gKrSAVD4keuBmufZk10tib-1kKf8eL1lWcEGcPNI873jsJ8ueEigJkPrlphz9oHEoKVAogZRA-b3slEArCkZqdv9QU1Hzk-xRjBsAwnjTPsxOKgqsaVtxmn09DyvrrMPiwgWr12jyD_YOTdGtVVhh_saPyrqYfw5-Zw3mnV9jtN7lvQ_5x1kPqEL-ZYv627BvOoMuqikBj7MHvRoiPjmcZ9n15cV19664-vT2fXd-VWhewVSQRmjWa4aN1i2Ivm4aU9eqVn3PWduirhRPpGBIaoVKK0VrbrRRSvfKVNVZ9noZu51vRjQa3RTUILfBjir8kF5Z-XfH2bVc-Z0kIAgnYj_h-WFC8LczxkmONqZ_HZRDP0dJK86I4JzQhLIF1cHHGLA_3kNA7qXIjVykyL0UCUQmKSn27M8dj6HfFhLwYgG-443vo7boNB4xAOAUmrYSqYI20c3_052dfuno_OymFH21RDEZ2VkM8hA3NqCepPH230_5CVDRwy0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354175512</pqid></control><display><type>article</type><title>Arginine-Enriched Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Greig, Jamie A. ; Nguyen, Tu Anh ; Lee, Michelle ; Holehouse, Alex S. ; Posey, Ammon E. ; Pappu, Rohit V. ; Jedd, Gregory</creator><creatorcontrib>Greig, Jamie A. ; Nguyen, Tu Anh ; Lee, Michelle ; Holehouse, Alex S. ; Posey, Ammon E. ; Pappu, Rohit V. ; Jedd, Gregory</creatorcontrib><description>Low-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle condensation. Proteins composed exclusively of arginine-aspartic acid dipeptide repeats undergo length-dependent condensation and speckle incorporation. Substituting arginine with lysine in synthetic and natural speckle-associated MCDs abolishes these activities, identifying a key role for multivalent contacts through arginine’s guanidinium ion. MCDs can synergize with a speckle-associated RNA recognition motif to promote speckle specificity and residence. MCD behavior is tunable through net-charge: increasing negative charge abolishes condensation and speckle incorporation. Contrastingly, increasing positive charge through arginine leads to enhanced condensation, speckle enlargement, decreased splicing factor mobility, and defective mRNA export. Together, these results identify key sequence determinants of MCD-promoted speckle condensation and link the dynamic material properties of speckles with function in mRNA processing. [Display omitted] •Arginine-enriched mixed-charge domains form condensates and drive speckle assembly•Substituting arginine with lysine abolishes mixed-charge domain (MCD) activity•MCDs synergize with RNA-binding domains to promote speckle residence•Increasing speckle cohesion through MCD expression leads to defects in mRNA export Greig et al. analyze natural and synthetic low-complexity mixed-charge domains (MCDs) to identify key sequence features influencing nuclear speckle condensation and function. Increasing negative charge abolishes MCD activity, whereas increasing positive charge through arginine, but not lysine, leads to increased speckle cohesion, enlarged speckles, and defects in mRNA export.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.01.025</identifier><identifier>PMID: 32048997</identifier><language>eng</language><publisher>CAMBRIDGE: Elsevier Inc</publisher><subject>Arginine - genetics ; Arginine - metabolism ; Biochemistry &amp; Molecular Biology ; biomolecular condensate ; Cell Biology ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Humans ; intrinsically disordered protein ; Intrinsically Disordered Proteins - genetics ; Intrinsically Disordered Proteins - metabolism ; Life Sciences &amp; Biomedicine ; low-complexity domain ; Lysine - genetics ; Lysine - metabolism ; membraneless organelle ; mixed-charge domain ; mRNA processing ; Mutation ; nuclear speckle ; phase separation ; Phosphorylation ; Protein Domains ; ribonucleoprotein (RNP) bodies ; RNA Splicing - genetics ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Science &amp; Technology ; Serine-Arginine Splicing Factors - genetics ; Serine-Arginine Splicing Factors - metabolism</subject><ispartof>Molecular cell, 2020-03, Vol.77 (6), p.1237-1250.e4</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>114</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000520893700009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c530t-187c4fc4e8cc907f688d66a6aff5499ec3a5c5374e16aeacaa265dcdaacfad33</citedby><cites>FETCH-LOGICAL-c530t-187c4fc4e8cc907f688d66a6aff5499ec3a5c5374e16aeacaa265dcdaacfad33</cites><orcidid>0000-0002-5428-3873 ; 0000-0002-4155-5729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.01.025$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,28257,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32048997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greig, Jamie A.</creatorcontrib><creatorcontrib>Nguyen, Tu Anh</creatorcontrib><creatorcontrib>Lee, Michelle</creatorcontrib><creatorcontrib>Holehouse, Alex S.</creatorcontrib><creatorcontrib>Posey, Ammon E.</creatorcontrib><creatorcontrib>Pappu, Rohit V.</creatorcontrib><creatorcontrib>Jedd, Gregory</creatorcontrib><title>Arginine-Enriched Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation</title><title>Molecular cell</title><addtitle>MOL CELL</addtitle><addtitle>Mol Cell</addtitle><description>Low-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle condensation. Proteins composed exclusively of arginine-aspartic acid dipeptide repeats undergo length-dependent condensation and speckle incorporation. Substituting arginine with lysine in synthetic and natural speckle-associated MCDs abolishes these activities, identifying a key role for multivalent contacts through arginine’s guanidinium ion. MCDs can synergize with a speckle-associated RNA recognition motif to promote speckle specificity and residence. MCD behavior is tunable through net-charge: increasing negative charge abolishes condensation and speckle incorporation. Contrastingly, increasing positive charge through arginine leads to enhanced condensation, speckle enlargement, decreased splicing factor mobility, and defective mRNA export. Together, these results identify key sequence determinants of MCD-promoted speckle condensation and link the dynamic material properties of speckles with function in mRNA processing. [Display omitted] •Arginine-enriched mixed-charge domains form condensates and drive speckle assembly•Substituting arginine with lysine abolishes mixed-charge domain (MCD) activity•MCDs synergize with RNA-binding domains to promote speckle residence•Increasing speckle cohesion through MCD expression leads to defects in mRNA export Greig et al. analyze natural and synthetic low-complexity mixed-charge domains (MCDs) to identify key sequence features influencing nuclear speckle condensation and function. Increasing negative charge abolishes MCD activity, whereas increasing positive charge through arginine, but not lysine, leads to increased speckle cohesion, enlarged speckles, and defects in mRNA export.</description><subject>Arginine - genetics</subject><subject>Arginine - metabolism</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>biomolecular condensate</subject><subject>Cell Biology</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Humans</subject><subject>intrinsically disordered protein</subject><subject>Intrinsically Disordered Proteins - genetics</subject><subject>Intrinsically Disordered Proteins - metabolism</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>low-complexity domain</subject><subject>Lysine - genetics</subject><subject>Lysine - metabolism</subject><subject>membraneless organelle</subject><subject>mixed-charge domain</subject><subject>mRNA processing</subject><subject>Mutation</subject><subject>nuclear speckle</subject><subject>phase separation</subject><subject>Phosphorylation</subject><subject>Protein Domains</subject><subject>ribonucleoprotein (RNP) bodies</subject><subject>RNA Splicing - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Science &amp; Technology</subject><subject>Serine-Arginine Splicing Factors - genetics</subject><subject>Serine-Arginine Splicing Factors - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhiMEoqXwDxDKEQkljB07Ti6gKrSAVD4keuBmufZk10tib-1kKf8eL1lWcEGcPNI873jsJ8ueEigJkPrlphz9oHEoKVAogZRA-b3slEArCkZqdv9QU1Hzk-xRjBsAwnjTPsxOKgqsaVtxmn09DyvrrMPiwgWr12jyD_YOTdGtVVhh_saPyrqYfw5-Zw3mnV9jtN7lvQ_5x1kPqEL-ZYv627BvOoMuqikBj7MHvRoiPjmcZ9n15cV19664-vT2fXd-VWhewVSQRmjWa4aN1i2Ivm4aU9eqVn3PWduirhRPpGBIaoVKK0VrbrRRSvfKVNVZ9noZu51vRjQa3RTUILfBjir8kF5Z-XfH2bVc-Z0kIAgnYj_h-WFC8LczxkmONqZ_HZRDP0dJK86I4JzQhLIF1cHHGLA_3kNA7qXIjVykyL0UCUQmKSn27M8dj6HfFhLwYgG-443vo7boNB4xAOAUmrYSqYI20c3_052dfuno_OymFH21RDEZ2VkM8hA3NqCepPH230_5CVDRwy0</recordid><startdate>20200319</startdate><enddate>20200319</enddate><creator>Greig, Jamie A.</creator><creator>Nguyen, Tu Anh</creator><creator>Lee, Michelle</creator><creator>Holehouse, Alex S.</creator><creator>Posey, Ammon E.</creator><creator>Pappu, Rohit V.</creator><creator>Jedd, Gregory</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5428-3873</orcidid><orcidid>https://orcid.org/0000-0002-4155-5729</orcidid></search><sort><creationdate>20200319</creationdate><title>Arginine-Enriched Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation</title><author>Greig, Jamie A. ; Nguyen, Tu Anh ; Lee, Michelle ; Holehouse, Alex S. ; Posey, Ammon E. ; Pappu, Rohit V. ; Jedd, Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-187c4fc4e8cc907f688d66a6aff5499ec3a5c5374e16aeacaa265dcdaacfad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arginine - genetics</topic><topic>Arginine - metabolism</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>biomolecular condensate</topic><topic>Cell Biology</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Humans</topic><topic>intrinsically disordered protein</topic><topic>Intrinsically Disordered Proteins - genetics</topic><topic>Intrinsically Disordered Proteins - metabolism</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>low-complexity domain</topic><topic>Lysine - genetics</topic><topic>Lysine - metabolism</topic><topic>membraneless organelle</topic><topic>mixed-charge domain</topic><topic>mRNA processing</topic><topic>Mutation</topic><topic>nuclear speckle</topic><topic>phase separation</topic><topic>Phosphorylation</topic><topic>Protein Domains</topic><topic>ribonucleoprotein (RNP) bodies</topic><topic>RNA Splicing - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Science &amp; Technology</topic><topic>Serine-Arginine Splicing Factors - genetics</topic><topic>Serine-Arginine Splicing Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greig, Jamie A.</creatorcontrib><creatorcontrib>Nguyen, Tu Anh</creatorcontrib><creatorcontrib>Lee, Michelle</creatorcontrib><creatorcontrib>Holehouse, Alex S.</creatorcontrib><creatorcontrib>Posey, Ammon E.</creatorcontrib><creatorcontrib>Pappu, Rohit V.</creatorcontrib><creatorcontrib>Jedd, Gregory</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greig, Jamie A.</au><au>Nguyen, Tu Anh</au><au>Lee, Michelle</au><au>Holehouse, Alex S.</au><au>Posey, Ammon E.</au><au>Pappu, Rohit V.</au><au>Jedd, Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arginine-Enriched Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation</atitle><jtitle>Molecular cell</jtitle><stitle>MOL CELL</stitle><addtitle>Mol Cell</addtitle><date>2020-03-19</date><risdate>2020</risdate><volume>77</volume><issue>6</issue><spage>1237</spage><epage>1250.e4</epage><pages>1237-1250.e4</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Low-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle condensation. Proteins composed exclusively of arginine-aspartic acid dipeptide repeats undergo length-dependent condensation and speckle incorporation. Substituting arginine with lysine in synthetic and natural speckle-associated MCDs abolishes these activities, identifying a key role for multivalent contacts through arginine’s guanidinium ion. MCDs can synergize with a speckle-associated RNA recognition motif to promote speckle specificity and residence. MCD behavior is tunable through net-charge: increasing negative charge abolishes condensation and speckle incorporation. Contrastingly, increasing positive charge through arginine leads to enhanced condensation, speckle enlargement, decreased splicing factor mobility, and defective mRNA export. Together, these results identify key sequence determinants of MCD-promoted speckle condensation and link the dynamic material properties of speckles with function in mRNA processing. [Display omitted] •Arginine-enriched mixed-charge domains form condensates and drive speckle assembly•Substituting arginine with lysine abolishes mixed-charge domain (MCD) activity•MCDs synergize with RNA-binding domains to promote speckle residence•Increasing speckle cohesion through MCD expression leads to defects in mRNA export Greig et al. analyze natural and synthetic low-complexity mixed-charge domains (MCDs) to identify key sequence features influencing nuclear speckle condensation and function. Increasing negative charge abolishes MCD activity, whereas increasing positive charge through arginine, but not lysine, leads to increased speckle cohesion, enlarged speckles, and defects in mRNA export.</abstract><cop>CAMBRIDGE</cop><pub>Elsevier Inc</pub><pmid>32048997</pmid><doi>10.1016/j.molcel.2020.01.025</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5428-3873</orcidid><orcidid>https://orcid.org/0000-0002-4155-5729</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2020-03, Vol.77 (6), p.1237-1250.e4
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_2354175512
source MEDLINE; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Arginine - genetics
Arginine - metabolism
Biochemistry & Molecular Biology
biomolecular condensate
Cell Biology
Cell Nucleus - genetics
Cell Nucleus - metabolism
Humans
intrinsically disordered protein
Intrinsically Disordered Proteins - genetics
Intrinsically Disordered Proteins - metabolism
Life Sciences & Biomedicine
low-complexity domain
Lysine - genetics
Lysine - metabolism
membraneless organelle
mixed-charge domain
mRNA processing
Mutation
nuclear speckle
phase separation
Phosphorylation
Protein Domains
ribonucleoprotein (RNP) bodies
RNA Splicing - genetics
RNA, Messenger - genetics
RNA, Messenger - metabolism
Science & Technology
Serine-Arginine Splicing Factors - genetics
Serine-Arginine Splicing Factors - metabolism
title Arginine-Enriched Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T10%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arginine-Enriched%20Mixed-Charge%20Domains%20Provide%20Cohesion%20for%20Nuclear%20Speckle%20Condensation&rft.jtitle=Molecular%20cell&rft.au=Greig,%20Jamie%20A.&rft.date=2020-03-19&rft.volume=77&rft.issue=6&rft.spage=1237&rft.epage=1250.e4&rft.pages=1237-1250.e4&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.01.025&rft_dat=%3Cproquest_pubme%3E2354175512%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354175512&rft_id=info:pmid/32048997&rft_els_id=S1097276520300460&rfr_iscdi=true