Using machine learning to reveal the population vector from EEG signals

Since the discovery of the population vector that directly relates neural spiking activity with arm movement direction, it has become feasible to control robotic arms and neuroprostheses using invasively recorded brain signals. For non-invasive approaches, a direct relation between human brain signa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2020-04, Vol.17 (2), p.026002-026002
Hauptverfasser: Kobler, Reinmar J, Almeida, Inês, Sburlea, Andreea I, Müller-Putz, Gernot R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 026002
container_issue 2
container_start_page 026002
container_title Journal of neural engineering
container_volume 17
creator Kobler, Reinmar J
Almeida, Inês
Sburlea, Andreea I
Müller-Putz, Gernot R
description Since the discovery of the population vector that directly relates neural spiking activity with arm movement direction, it has become feasible to control robotic arms and neuroprostheses using invasively recorded brain signals. For non-invasive approaches, a direct relation between human brain signals and arm movement direction is yet to be established. Here, we investigated electroencephalographic (EEG) signals in temporal and spectral domains in a continuous, circular arm movement task. Using machine learning methods that respect the linear mixture of brain activity within EEG signals, we show that directional information is represented in the temporal domain in amplitude modulations of the same frequency as the arm movement, and in the spectral domain in power modulations of the 20-24 Hz frequency band. In the temporal domain, the directional information was mainly expressed in primary sensorimotor cortex (SM1) and posterior parietal cortex (PPC) contralateral to the moving arm, while in the spectral domain SM1 and PPC of both hemispheres predicted arm movement direction. The different cortical representations suggest distinct neural representations in both domains. This direct relation between neural activity and arm movement direction in both domains demonstrates the potential of machine learning to reveal neuroscientific insights about the dynamics of human arm movements.
doi_str_mv 10.1088/1741-2552/ab7490
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2354151458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354151458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-41a4943315ecb1aa4105f784b341abc43878a787bd4f4b23de25a7d7970125d63</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EoqWwMyGPLKF-_qidEVWhIFViobNlJ04blMTBTirx35OopdM93bu74YfQI5AXIEotQXJIqBB0aazkKblC84t1fblXZIbuYvwmhIFMyS2aMUq4WgGdo80uVu0eNyY_VK3DtTOhnYze4-COztS4Pzjc-W6oTV_5Fh9d3vuAy-AbnGUbHKt9a-p4j27KUdzDWRdo95Z9rd-T7efmY_26TXLGoU84GJ5yxkC43IIxHIgopeJ2_Bqbc6akMlJJW_CSW8oKR4WRhUwlASqKFVug59NuF_zP4GKvmyrmrq5N6_wQNWWCgwAu1Bglp2gefIzBlboLVWPCrwaiJ3x64qMnVvqEb6w8ndcH27jiUvjnxf4Aesdpnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354151458</pqid></control><display><type>article</type><title>Using machine learning to reveal the population vector from EEG signals</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kobler, Reinmar J ; Almeida, Inês ; Sburlea, Andreea I ; Müller-Putz, Gernot R</creator><creatorcontrib>Kobler, Reinmar J ; Almeida, Inês ; Sburlea, Andreea I ; Müller-Putz, Gernot R</creatorcontrib><description>Since the discovery of the population vector that directly relates neural spiking activity with arm movement direction, it has become feasible to control robotic arms and neuroprostheses using invasively recorded brain signals. For non-invasive approaches, a direct relation between human brain signals and arm movement direction is yet to be established. Here, we investigated electroencephalographic (EEG) signals in temporal and spectral domains in a continuous, circular arm movement task. Using machine learning methods that respect the linear mixture of brain activity within EEG signals, we show that directional information is represented in the temporal domain in amplitude modulations of the same frequency as the arm movement, and in the spectral domain in power modulations of the 20-24 Hz frequency band. In the temporal domain, the directional information was mainly expressed in primary sensorimotor cortex (SM1) and posterior parietal cortex (PPC) contralateral to the moving arm, while in the spectral domain SM1 and PPC of both hemispheres predicted arm movement direction. The different cortical representations suggest distinct neural representations in both domains. This direct relation between neural activity and arm movement direction in both domains demonstrates the potential of machine learning to reveal neuroscientific insights about the dynamics of human arm movements.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ab7490</identifier><identifier>PMID: 32048612</identifier><language>eng</language><publisher>England</publisher><ispartof>Journal of neural engineering, 2020-04, Vol.17 (2), p.026002-026002</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-41a4943315ecb1aa4105f784b341abc43878a787bd4f4b23de25a7d7970125d63</citedby><cites>FETCH-LOGICAL-c341t-41a4943315ecb1aa4105f784b341abc43878a787bd4f4b23de25a7d7970125d63</cites><orcidid>0000-0002-0087-3720 ; 0000-0001-6766-3464 ; 0000-0003-4007-279X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32048612$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kobler, Reinmar J</creatorcontrib><creatorcontrib>Almeida, Inês</creatorcontrib><creatorcontrib>Sburlea, Andreea I</creatorcontrib><creatorcontrib>Müller-Putz, Gernot R</creatorcontrib><title>Using machine learning to reveal the population vector from EEG signals</title><title>Journal of neural engineering</title><addtitle>J Neural Eng</addtitle><description>Since the discovery of the population vector that directly relates neural spiking activity with arm movement direction, it has become feasible to control robotic arms and neuroprostheses using invasively recorded brain signals. For non-invasive approaches, a direct relation between human brain signals and arm movement direction is yet to be established. Here, we investigated electroencephalographic (EEG) signals in temporal and spectral domains in a continuous, circular arm movement task. Using machine learning methods that respect the linear mixture of brain activity within EEG signals, we show that directional information is represented in the temporal domain in amplitude modulations of the same frequency as the arm movement, and in the spectral domain in power modulations of the 20-24 Hz frequency band. In the temporal domain, the directional information was mainly expressed in primary sensorimotor cortex (SM1) and posterior parietal cortex (PPC) contralateral to the moving arm, while in the spectral domain SM1 and PPC of both hemispheres predicted arm movement direction. The different cortical representations suggest distinct neural representations in both domains. This direct relation between neural activity and arm movement direction in both domains demonstrates the potential of machine learning to reveal neuroscientific insights about the dynamics of human arm movements.</description><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAUxC0EoqWwMyGPLKF-_qidEVWhIFViobNlJ04blMTBTirx35OopdM93bu74YfQI5AXIEotQXJIqBB0aazkKblC84t1fblXZIbuYvwmhIFMyS2aMUq4WgGdo80uVu0eNyY_VK3DtTOhnYze4-COztS4Pzjc-W6oTV_5Fh9d3vuAy-AbnGUbHKt9a-p4j27KUdzDWRdo95Z9rd-T7efmY_26TXLGoU84GJ5yxkC43IIxHIgopeJ2_Bqbc6akMlJJW_CSW8oKR4WRhUwlASqKFVug59NuF_zP4GKvmyrmrq5N6_wQNWWCgwAu1Bglp2gefIzBlboLVWPCrwaiJ3x64qMnVvqEb6w8ndcH27jiUvjnxf4Aesdpnw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kobler, Reinmar J</creator><creator>Almeida, Inês</creator><creator>Sburlea, Andreea I</creator><creator>Müller-Putz, Gernot R</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0087-3720</orcidid><orcidid>https://orcid.org/0000-0001-6766-3464</orcidid><orcidid>https://orcid.org/0000-0003-4007-279X</orcidid></search><sort><creationdate>20200401</creationdate><title>Using machine learning to reveal the population vector from EEG signals</title><author>Kobler, Reinmar J ; Almeida, Inês ; Sburlea, Andreea I ; Müller-Putz, Gernot R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-41a4943315ecb1aa4105f784b341abc43878a787bd4f4b23de25a7d7970125d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobler, Reinmar J</creatorcontrib><creatorcontrib>Almeida, Inês</creatorcontrib><creatorcontrib>Sburlea, Andreea I</creatorcontrib><creatorcontrib>Müller-Putz, Gernot R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobler, Reinmar J</au><au>Almeida, Inês</au><au>Sburlea, Andreea I</au><au>Müller-Putz, Gernot R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using machine learning to reveal the population vector from EEG signals</atitle><jtitle>Journal of neural engineering</jtitle><addtitle>J Neural Eng</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>17</volume><issue>2</issue><spage>026002</spage><epage>026002</epage><pages>026002-026002</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><abstract>Since the discovery of the population vector that directly relates neural spiking activity with arm movement direction, it has become feasible to control robotic arms and neuroprostheses using invasively recorded brain signals. For non-invasive approaches, a direct relation between human brain signals and arm movement direction is yet to be established. Here, we investigated electroencephalographic (EEG) signals in temporal and spectral domains in a continuous, circular arm movement task. Using machine learning methods that respect the linear mixture of brain activity within EEG signals, we show that directional information is represented in the temporal domain in amplitude modulations of the same frequency as the arm movement, and in the spectral domain in power modulations of the 20-24 Hz frequency band. In the temporal domain, the directional information was mainly expressed in primary sensorimotor cortex (SM1) and posterior parietal cortex (PPC) contralateral to the moving arm, while in the spectral domain SM1 and PPC of both hemispheres predicted arm movement direction. The different cortical representations suggest distinct neural representations in both domains. This direct relation between neural activity and arm movement direction in both domains demonstrates the potential of machine learning to reveal neuroscientific insights about the dynamics of human arm movements.</abstract><cop>England</cop><pmid>32048612</pmid><doi>10.1088/1741-2552/ab7490</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0087-3720</orcidid><orcidid>https://orcid.org/0000-0001-6766-3464</orcidid><orcidid>https://orcid.org/0000-0003-4007-279X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2020-04, Vol.17 (2), p.026002-026002
issn 1741-2560
1741-2552
language eng
recordid cdi_proquest_miscellaneous_2354151458
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
title Using machine learning to reveal the population vector from EEG signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20machine%20learning%20to%20reveal%20the%20population%20vector%20from%20EEG%20signals&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Kobler,%20Reinmar%20J&rft.date=2020-04-01&rft.volume=17&rft.issue=2&rft.spage=026002&rft.epage=026002&rft.pages=026002-026002&rft.issn=1741-2560&rft.eissn=1741-2552&rft_id=info:doi/10.1088/1741-2552/ab7490&rft_dat=%3Cproquest_cross%3E2354151458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2354151458&rft_id=info:pmid/32048612&rfr_iscdi=true