Classification of foodborne bacteria using hyperspectral microscope imaging technology coupled with convolutional neural networks
Foodborne pathogens have become ongoing threats in the food industry, whereas their rapid detection and classification at an early stage are still challenging. To address early and rapid detection, hyperspectral microscope imaging (HMI) technology combined with convolutional neural networks (CNN) wa...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2020-04, Vol.104 (7), p.3157-3166 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3166 |
---|---|
container_issue | 7 |
container_start_page | 3157 |
container_title | Applied microbiology and biotechnology |
container_volume | 104 |
creator | Kang, Rui Park, Bosoon Eady, Matthew Ouyang, Qin Chen, Kunjie |
description | Foodborne pathogens have become ongoing threats in the food industry, whereas their rapid detection and classification at an early stage are still challenging. To address early and rapid detection, hyperspectral microscope imaging (HMI) technology combined with convolutional neural networks (CNN) was proposed to classify foodborne bacterial species at the cellular level. HMI technology can simultaneously obtain both spatial and spectral information of different live bacterial cells, while two CNN frameworks, U-Net and one-dimensional CNN (1D-CNN), were employed to accelerate the data analysis process. U-Net was used for automating cellular regions of interest (ROI) segmentation, which generated accurate cell-ROI masks in a shorter timeframe than the conventional Otsu or Watershed methods. The 1D-CNN was employed for classifying the spectral profiles extracted from cell-ROI and resulted in a higher accuracy (90%) than
k
-nearest neighbor (81%) and support vector machine (81%). Overall, the CNN-assisted HMI technology showed potential for foodborne bacteria detection. |
doi_str_mv | 10.1007/s00253-020-10387-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2354149466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2374097564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-60f9c0087962bde812bc53ccb29a9d0f5ce3527cc723bc5d88b751829786b0ad3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotuPP8ABWeLCJTD-to9oBRSpUi9wthzH2XXJxsFOqPbIP6_TLSBx4DQazfO-M5oXoVcE3hEA9b4AUMEaoNAQYFo1_BnaEM5oA5Lw52gDRIlGCaPP0HkpdwCEailfojNGgStjyAb92g6ulNhH7-aYRpx63KfUtSmPAbfOzyFHh5cSxx3eH6eQyxT8nN2AD9HnVHyaAo4Ht1uBOfj9mIa0O2KflmkIHb6P87424880LOuCKhzDkh_LfJ_y93KJXvRuKOHqqV6gb58-ft1eNze3n79sP9w0nhM6NxJ64wG0MpK2XdCEtl4w71tqnOmgFz4wQZX3irI66bRulSCaGqVlC65jF-jtyXfK6ccSymwPsfgwDG4MaSmWMsEJN1zKir75B71LS663r5TiYJSQvFL0RK1_KDn0dsr1E_loCdg1IHsKyNaA7GNAdhW9frJe2kPo_kh-J1IBdgJKHY27kP_u_o_tA7Jwnp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374097564</pqid></control><display><type>article</type><title>Classification of foodborne bacteria using hyperspectral microscope imaging technology coupled with convolutional neural networks</title><source>Springer Nature - Complete Springer Journals</source><creator>Kang, Rui ; Park, Bosoon ; Eady, Matthew ; Ouyang, Qin ; Chen, Kunjie</creator><creatorcontrib>Kang, Rui ; Park, Bosoon ; Eady, Matthew ; Ouyang, Qin ; Chen, Kunjie</creatorcontrib><description>Foodborne pathogens have become ongoing threats in the food industry, whereas their rapid detection and classification at an early stage are still challenging. To address early and rapid detection, hyperspectral microscope imaging (HMI) technology combined with convolutional neural networks (CNN) was proposed to classify foodborne bacterial species at the cellular level. HMI technology can simultaneously obtain both spatial and spectral information of different live bacterial cells, while two CNN frameworks, U-Net and one-dimensional CNN (1D-CNN), were employed to accelerate the data analysis process. U-Net was used for automating cellular regions of interest (ROI) segmentation, which generated accurate cell-ROI masks in a shorter timeframe than the conventional Otsu or Watershed methods. The 1D-CNN was employed for classifying the spectral profiles extracted from cell-ROI and resulted in a higher accuracy (90%) than
k
-nearest neighbor (81%) and support vector machine (81%). Overall, the CNN-assisted HMI technology showed potential for foodborne bacteria detection.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10387-4</identifier><identifier>PMID: 32047991</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Bacteria ; Biomedical and Life Sciences ; Biotechnology ; Cellular communication ; Data analysis ; Food industry ; Food irradiation ; Food processing industry ; Foodborne pathogens ; Image segmentation ; Life Sciences ; Masks ; Methods and Protocols ; Microbial Genetics and Genomics ; Microbiology ; Neural networks ; Species classification ; Support vector machines</subject><ispartof>Applied microbiology and biotechnology, 2020-04, Vol.104 (7), p.3157-3166</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-60f9c0087962bde812bc53ccb29a9d0f5ce3527cc723bc5d88b751829786b0ad3</citedby><cites>FETCH-LOGICAL-c412t-60f9c0087962bde812bc53ccb29a9d0f5ce3527cc723bc5d88b751829786b0ad3</cites><orcidid>0000-0001-8721-9117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10387-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10387-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32047991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Rui</creatorcontrib><creatorcontrib>Park, Bosoon</creatorcontrib><creatorcontrib>Eady, Matthew</creatorcontrib><creatorcontrib>Ouyang, Qin</creatorcontrib><creatorcontrib>Chen, Kunjie</creatorcontrib><title>Classification of foodborne bacteria using hyperspectral microscope imaging technology coupled with convolutional neural networks</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Foodborne pathogens have become ongoing threats in the food industry, whereas their rapid detection and classification at an early stage are still challenging. To address early and rapid detection, hyperspectral microscope imaging (HMI) technology combined with convolutional neural networks (CNN) was proposed to classify foodborne bacterial species at the cellular level. HMI technology can simultaneously obtain both spatial and spectral information of different live bacterial cells, while two CNN frameworks, U-Net and one-dimensional CNN (1D-CNN), were employed to accelerate the data analysis process. U-Net was used for automating cellular regions of interest (ROI) segmentation, which generated accurate cell-ROI masks in a shorter timeframe than the conventional Otsu or Watershed methods. The 1D-CNN was employed for classifying the spectral profiles extracted from cell-ROI and resulted in a higher accuracy (90%) than
k
-nearest neighbor (81%) and support vector machine (81%). Overall, the CNN-assisted HMI technology showed potential for foodborne bacteria detection.</description><subject>Artificial neural networks</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cellular communication</subject><subject>Data analysis</subject><subject>Food industry</subject><subject>Food irradiation</subject><subject>Food processing industry</subject><subject>Foodborne pathogens</subject><subject>Image segmentation</subject><subject>Life Sciences</subject><subject>Masks</subject><subject>Methods and Protocols</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Neural networks</subject><subject>Species classification</subject><subject>Support vector machines</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhi0EotuPP8ABWeLCJTD-to9oBRSpUi9wthzH2XXJxsFOqPbIP6_TLSBx4DQazfO-M5oXoVcE3hEA9b4AUMEaoNAQYFo1_BnaEM5oA5Lw52gDRIlGCaPP0HkpdwCEailfojNGgStjyAb92g6ulNhH7-aYRpx63KfUtSmPAbfOzyFHh5cSxx3eH6eQyxT8nN2AD9HnVHyaAo4Ht1uBOfj9mIa0O2KflmkIHb6P87424880LOuCKhzDkh_LfJ_y93KJXvRuKOHqqV6gb58-ft1eNze3n79sP9w0nhM6NxJ64wG0MpK2XdCEtl4w71tqnOmgFz4wQZX3irI66bRulSCaGqVlC65jF-jtyXfK6ccSymwPsfgwDG4MaSmWMsEJN1zKir75B71LS663r5TiYJSQvFL0RK1_KDn0dsr1E_loCdg1IHsKyNaA7GNAdhW9frJe2kPo_kh-J1IBdgJKHY27kP_u_o_tA7Jwnp4</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kang, Rui</creator><creator>Park, Bosoon</creator><creator>Eady, Matthew</creator><creator>Ouyang, Qin</creator><creator>Chen, Kunjie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8721-9117</orcidid></search><sort><creationdate>20200401</creationdate><title>Classification of foodborne bacteria using hyperspectral microscope imaging technology coupled with convolutional neural networks</title><author>Kang, Rui ; Park, Bosoon ; Eady, Matthew ; Ouyang, Qin ; Chen, Kunjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-60f9c0087962bde812bc53ccb29a9d0f5ce3527cc723bc5d88b751829786b0ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cellular communication</topic><topic>Data analysis</topic><topic>Food industry</topic><topic>Food irradiation</topic><topic>Food processing industry</topic><topic>Foodborne pathogens</topic><topic>Image segmentation</topic><topic>Life Sciences</topic><topic>Masks</topic><topic>Methods and Protocols</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Neural networks</topic><topic>Species classification</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Rui</creatorcontrib><creatorcontrib>Park, Bosoon</creatorcontrib><creatorcontrib>Eady, Matthew</creatorcontrib><creatorcontrib>Ouyang, Qin</creatorcontrib><creatorcontrib>Chen, Kunjie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Rui</au><au>Park, Bosoon</au><au>Eady, Matthew</au><au>Ouyang, Qin</au><au>Chen, Kunjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of foodborne bacteria using hyperspectral microscope imaging technology coupled with convolutional neural networks</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>104</volume><issue>7</issue><spage>3157</spage><epage>3166</epage><pages>3157-3166</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Foodborne pathogens have become ongoing threats in the food industry, whereas their rapid detection and classification at an early stage are still challenging. To address early and rapid detection, hyperspectral microscope imaging (HMI) technology combined with convolutional neural networks (CNN) was proposed to classify foodborne bacterial species at the cellular level. HMI technology can simultaneously obtain both spatial and spectral information of different live bacterial cells, while two CNN frameworks, U-Net and one-dimensional CNN (1D-CNN), were employed to accelerate the data analysis process. U-Net was used for automating cellular regions of interest (ROI) segmentation, which generated accurate cell-ROI masks in a shorter timeframe than the conventional Otsu or Watershed methods. The 1D-CNN was employed for classifying the spectral profiles extracted from cell-ROI and resulted in a higher accuracy (90%) than
k
-nearest neighbor (81%) and support vector machine (81%). Overall, the CNN-assisted HMI technology showed potential for foodborne bacteria detection.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32047991</pmid><doi>10.1007/s00253-020-10387-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8721-9117</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2020-04, Vol.104 (7), p.3157-3166 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2354149466 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial neural networks Bacteria Biomedical and Life Sciences Biotechnology Cellular communication Data analysis Food industry Food irradiation Food processing industry Foodborne pathogens Image segmentation Life Sciences Masks Methods and Protocols Microbial Genetics and Genomics Microbiology Neural networks Species classification Support vector machines |
title | Classification of foodborne bacteria using hyperspectral microscope imaging technology coupled with convolutional neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20foodborne%20bacteria%20using%20hyperspectral%20microscope%20imaging%20technology%20coupled%20with%20convolutional%20neural%20networks&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Kang,%20Rui&rft.date=2020-04-01&rft.volume=104&rft.issue=7&rft.spage=3157&rft.epage=3166&rft.pages=3157-3166&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10387-4&rft_dat=%3Cproquest_cross%3E2374097564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374097564&rft_id=info:pmid/32047991&rfr_iscdi=true |