Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis
In the present work, we used systematic engineering at transport and transcription levels to significantly enhance alkaline α-amylase production in Bacillus subtilis 168 M . Signal peptide YwbN’ proved to be optimal. Alkaline α-amylase production was elevated by deleting a putative peptide segment o...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2020-04, Vol.104 (7), p.2973-2985 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2985 |
---|---|
container_issue | 7 |
container_start_page | 2973 |
container_title | Applied microbiology and biotechnology |
container_volume | 104 |
creator | Yang, Haiquan Ma, Yingfang Zhao, Yuan Shen, Wei Chen, Xianzhong |
description | In the present work, we used systematic engineering at transport and transcription levels to significantly enhance alkaline α-amylase production in
Bacillus subtilis
168
M
. Signal peptide YwbN’ proved to be optimal. Alkaline α-amylase production was elevated by deleting a putative peptide segment of YwbN’. Insertion of arginine (R) between residues 5 and 6 of YwbN’∆p further increased the protein yield. Enhancing positive charges at sites 4 and 10 and decreasing the hydrophobicity of the
H
-region of YwbN’∆p were critical for improving alkaline α-amylase production in
B
.
subtilis
168
M
. P
HpaII
was the optimal promoter, and deleting − 27T or − 31A from P
HpaII
enhanced the transcription of the target gene. Using a single-pulse feeding-based fed-batch system, alkaline α-amylase activity of
B
.
subtilis
168
M
P
∆−27T
was increased by 250.6-fold, compared with
B
.
subtilis
168
M
A1. |
doi_str_mv | 10.1007/s00253-020-10435-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2353588297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353588297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8169ae783307ff8362fda209c55806569c6bb1b9c68a14591896468bfcbb2b003</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EopcLL8ACWWLDxjC2Y8dZQsWfVIlFy9qyfZ3KxbGDnSxu34oX6TPhNgUkFl2NRvOdM6M5CL2k8JYC9O8qABOcAANCoeOCXD9CO9pxRkDS7jHaAe0F6cWgTtCzWq8AKFNSPkUnnDWeKrVD5fxYFz-ZJTjs02VI3peQLnEe8VJMqnMuCzbpsHWuhHkJOeElY5tzbaP4w8Smwje_iJmO0VSP55IPq7vjQsIfjAsxrhXX1S4hhvocPRlNrP7Ffd2j758-Xpx-IWffPn89fX9GHO_FQhSVg_G94hz6cVRcsvFgGAxOCAVSyMFJa6ltRRnaiYGqQXZS2dFZyywA36M3m2-75-fq66KnUJ2P0SSf16oZF1woxYa-oa__Q6_yWlK7rlF9B4Po21_3iG2UK7nW4kc9lzCZctQU9G0iektEt0T0XSL6uole3VuvdvKHv5I_ETSAb0Cdbz_vy7_dD9j-BoAcmMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374095714</pqid></control><display><type>article</type><title>Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Haiquan ; Ma, Yingfang ; Zhao, Yuan ; Shen, Wei ; Chen, Xianzhong</creator><creatorcontrib>Yang, Haiquan ; Ma, Yingfang ; Zhao, Yuan ; Shen, Wei ; Chen, Xianzhong</creatorcontrib><description>In the present work, we used systematic engineering at transport and transcription levels to significantly enhance alkaline α-amylase production in
Bacillus subtilis
168
M
. Signal peptide YwbN’ proved to be optimal. Alkaline α-amylase production was elevated by deleting a putative peptide segment of YwbN’. Insertion of arginine (R) between residues 5 and 6 of YwbN’∆p further increased the protein yield. Enhancing positive charges at sites 4 and 10 and decreasing the hydrophobicity of the
H
-region of YwbN’∆p were critical for improving alkaline α-amylase production in
B
.
subtilis
168
M
. P
HpaII
was the optimal promoter, and deleting − 27T or − 31A from P
HpaII
enhanced the transcription of the target gene. Using a single-pulse feeding-based fed-batch system, alkaline α-amylase activity of
B
.
subtilis
168
M
P
∆−27T
was increased by 250.6-fold, compared with
B
.
subtilis
168
M
A1.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10435-z</identifier><identifier>PMID: 32043188</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amylases ; Arginine ; Bacillus subtilis ; Batch culture ; Biomedical and Life Sciences ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Hydrophobicity ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Peptides ; Transcription ; Transport ; α-Amylase</subject><ispartof>Applied microbiology and biotechnology, 2020-04, Vol.104 (7), p.2973-2985</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8169ae783307ff8362fda209c55806569c6bb1b9c68a14591896468bfcbb2b003</citedby><cites>FETCH-LOGICAL-c375t-8169ae783307ff8362fda209c55806569c6bb1b9c68a14591896468bfcbb2b003</cites><orcidid>0000-0001-6173-8787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10435-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10435-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32043188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Haiquan</creatorcontrib><creatorcontrib>Ma, Yingfang</creatorcontrib><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Chen, Xianzhong</creatorcontrib><title>Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>In the present work, we used systematic engineering at transport and transcription levels to significantly enhance alkaline α-amylase production in
Bacillus subtilis
168
M
. Signal peptide YwbN’ proved to be optimal. Alkaline α-amylase production was elevated by deleting a putative peptide segment of YwbN’. Insertion of arginine (R) between residues 5 and 6 of YwbN’∆p further increased the protein yield. Enhancing positive charges at sites 4 and 10 and decreasing the hydrophobicity of the
H
-region of YwbN’∆p were critical for improving alkaline α-amylase production in
B
.
subtilis
168
M
. P
HpaII
was the optimal promoter, and deleting − 27T or − 31A from P
HpaII
enhanced the transcription of the target gene. Using a single-pulse feeding-based fed-batch system, alkaline α-amylase activity of
B
.
subtilis
168
M
P
∆−27T
was increased by 250.6-fold, compared with
B
.
subtilis
168
M
A1.</description><subject>Amylases</subject><subject>Arginine</subject><subject>Bacillus subtilis</subject><subject>Batch culture</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Hydrophobicity</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Peptides</subject><subject>Transcription</subject><subject>Transport</subject><subject>α-Amylase</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1TAQhS0EopcLL8ACWWLDxjC2Y8dZQsWfVIlFy9qyfZ3KxbGDnSxu34oX6TPhNgUkFl2NRvOdM6M5CL2k8JYC9O8qABOcAANCoeOCXD9CO9pxRkDS7jHaAe0F6cWgTtCzWq8AKFNSPkUnnDWeKrVD5fxYFz-ZJTjs02VI3peQLnEe8VJMqnMuCzbpsHWuhHkJOeElY5tzbaP4w8Smwje_iJmO0VSP55IPq7vjQsIfjAsxrhXX1S4hhvocPRlNrP7Ffd2j758-Xpx-IWffPn89fX9GHO_FQhSVg_G94hz6cVRcsvFgGAxOCAVSyMFJa6ltRRnaiYGqQXZS2dFZyywA36M3m2-75-fq66KnUJ2P0SSf16oZF1woxYa-oa__Q6_yWlK7rlF9B4Po21_3iG2UK7nW4kc9lzCZctQU9G0iektEt0T0XSL6uole3VuvdvKHv5I_ETSAb0Cdbz_vy7_dD9j-BoAcmMM</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Yang, Haiquan</creator><creator>Ma, Yingfang</creator><creator>Zhao, Yuan</creator><creator>Shen, Wei</creator><creator>Chen, Xianzhong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6173-8787</orcidid></search><sort><creationdate>20200401</creationdate><title>Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis</title><author>Yang, Haiquan ; Ma, Yingfang ; Zhao, Yuan ; Shen, Wei ; Chen, Xianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8169ae783307ff8362fda209c55806569c6bb1b9c68a14591896468bfcbb2b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amylases</topic><topic>Arginine</topic><topic>Bacillus subtilis</topic><topic>Batch culture</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Hydrophobicity</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Peptides</topic><topic>Transcription</topic><topic>Transport</topic><topic>α-Amylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haiquan</creatorcontrib><creatorcontrib>Ma, Yingfang</creatorcontrib><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Chen, Xianzhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haiquan</au><au>Ma, Yingfang</au><au>Zhao, Yuan</au><au>Shen, Wei</au><au>Chen, Xianzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>104</volume><issue>7</issue><spage>2973</spage><epage>2985</epage><pages>2973-2985</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>In the present work, we used systematic engineering at transport and transcription levels to significantly enhance alkaline α-amylase production in
Bacillus subtilis
168
M
. Signal peptide YwbN’ proved to be optimal. Alkaline α-amylase production was elevated by deleting a putative peptide segment of YwbN’. Insertion of arginine (R) between residues 5 and 6 of YwbN’∆p further increased the protein yield. Enhancing positive charges at sites 4 and 10 and decreasing the hydrophobicity of the
H
-region of YwbN’∆p were critical for improving alkaline α-amylase production in
B
.
subtilis
168
M
. P
HpaII
was the optimal promoter, and deleting − 27T or − 31A from P
HpaII
enhanced the transcription of the target gene. Using a single-pulse feeding-based fed-batch system, alkaline α-amylase activity of
B
.
subtilis
168
M
P
∆−27T
was increased by 250.6-fold, compared with
B
.
subtilis
168
M
A1.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32043188</pmid><doi>10.1007/s00253-020-10435-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6173-8787</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2020-04, Vol.104 (7), p.2973-2985 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2353588297 |
source | SpringerLink Journals - AutoHoldings |
subjects | Amylases Arginine Bacillus subtilis Batch culture Biomedical and Life Sciences Biotechnologically Relevant Enzymes and Proteins Biotechnology Hydrophobicity Life Sciences Microbial Genetics and Genomics Microbiology Peptides Transcription Transport α-Amylase |
title | Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20engineering%20of%20transport%20and%20transcription%20to%20boost%20alkaline%20%CE%B1-amylase%20production%20in%20Bacillus%20subtilis&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Yang,%20Haiquan&rft.date=2020-04-01&rft.volume=104&rft.issue=7&rft.spage=2973&rft.epage=2985&rft.pages=2973-2985&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10435-z&rft_dat=%3Cproquest_cross%3E2353588297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374095714&rft_id=info:pmid/32043188&rfr_iscdi=true |