Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis

In the present work, we used systematic engineering at transport and transcription levels to significantly enhance alkaline α-amylase production in Bacillus subtilis 168 M . Signal peptide YwbN’ proved to be optimal. Alkaline α-amylase production was elevated by deleting a putative peptide segment o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2020-04, Vol.104 (7), p.2973-2985
Hauptverfasser: Yang, Haiquan, Ma, Yingfang, Zhao, Yuan, Shen, Wei, Chen, Xianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2985
container_issue 7
container_start_page 2973
container_title Applied microbiology and biotechnology
container_volume 104
creator Yang, Haiquan
Ma, Yingfang
Zhao, Yuan
Shen, Wei
Chen, Xianzhong
description In the present work, we used systematic engineering at transport and transcription levels to significantly enhance alkaline α-amylase production in Bacillus subtilis 168 M . Signal peptide YwbN’ proved to be optimal. Alkaline α-amylase production was elevated by deleting a putative peptide segment of YwbN’. Insertion of arginine (R) between residues 5 and 6 of YwbN’∆p further increased the protein yield. Enhancing positive charges at sites 4 and 10 and decreasing the hydrophobicity of the H -region of YwbN’∆p were critical for improving alkaline α-amylase production in B . subtilis 168 M . P HpaII was the optimal promoter, and deleting − 27T or − 31A from P HpaII enhanced the transcription of the target gene. Using a single-pulse feeding-based fed-batch system, alkaline α-amylase activity of B . subtilis 168 M P ∆−27T was increased by 250.6-fold, compared with B . subtilis 168 M A1.
doi_str_mv 10.1007/s00253-020-10435-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2353588297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353588297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8169ae783307ff8362fda209c55806569c6bb1b9c68a14591896468bfcbb2b003</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EopcLL8ACWWLDxjC2Y8dZQsWfVIlFy9qyfZ3KxbGDnSxu34oX6TPhNgUkFl2NRvOdM6M5CL2k8JYC9O8qABOcAANCoeOCXD9CO9pxRkDS7jHaAe0F6cWgTtCzWq8AKFNSPkUnnDWeKrVD5fxYFz-ZJTjs02VI3peQLnEe8VJMqnMuCzbpsHWuhHkJOeElY5tzbaP4w8Smwje_iJmO0VSP55IPq7vjQsIfjAsxrhXX1S4hhvocPRlNrP7Ffd2j758-Xpx-IWffPn89fX9GHO_FQhSVg_G94hz6cVRcsvFgGAxOCAVSyMFJa6ltRRnaiYGqQXZS2dFZyywA36M3m2-75-fq66KnUJ2P0SSf16oZF1woxYa-oa__Q6_yWlK7rlF9B4Po21_3iG2UK7nW4kc9lzCZctQU9G0iektEt0T0XSL6uole3VuvdvKHv5I_ETSAb0Cdbz_vy7_dD9j-BoAcmMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374095714</pqid></control><display><type>article</type><title>Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yang, Haiquan ; Ma, Yingfang ; Zhao, Yuan ; Shen, Wei ; Chen, Xianzhong</creator><creatorcontrib>Yang, Haiquan ; Ma, Yingfang ; Zhao, Yuan ; Shen, Wei ; Chen, Xianzhong</creatorcontrib><description>In the present work, we used systematic engineering at transport and transcription levels to significantly enhance alkaline α-amylase production in Bacillus subtilis 168 M . Signal peptide YwbN’ proved to be optimal. Alkaline α-amylase production was elevated by deleting a putative peptide segment of YwbN’. Insertion of arginine (R) between residues 5 and 6 of YwbN’∆p further increased the protein yield. Enhancing positive charges at sites 4 and 10 and decreasing the hydrophobicity of the H -region of YwbN’∆p were critical for improving alkaline α-amylase production in B . subtilis 168 M . P HpaII was the optimal promoter, and deleting − 27T or − 31A from P HpaII enhanced the transcription of the target gene. Using a single-pulse feeding-based fed-batch system, alkaline α-amylase activity of B . subtilis 168 M P ∆−27T was increased by 250.6-fold, compared with B . subtilis 168 M A1.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10435-z</identifier><identifier>PMID: 32043188</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amylases ; Arginine ; Bacillus subtilis ; Batch culture ; Biomedical and Life Sciences ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; Hydrophobicity ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Peptides ; Transcription ; Transport ; α-Amylase</subject><ispartof>Applied microbiology and biotechnology, 2020-04, Vol.104 (7), p.2973-2985</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8169ae783307ff8362fda209c55806569c6bb1b9c68a14591896468bfcbb2b003</citedby><cites>FETCH-LOGICAL-c375t-8169ae783307ff8362fda209c55806569c6bb1b9c68a14591896468bfcbb2b003</cites><orcidid>0000-0001-6173-8787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10435-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10435-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32043188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Haiquan</creatorcontrib><creatorcontrib>Ma, Yingfang</creatorcontrib><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Chen, Xianzhong</creatorcontrib><title>Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>In the present work, we used systematic engineering at transport and transcription levels to significantly enhance alkaline α-amylase production in Bacillus subtilis 168 M . Signal peptide YwbN’ proved to be optimal. Alkaline α-amylase production was elevated by deleting a putative peptide segment of YwbN’. Insertion of arginine (R) between residues 5 and 6 of YwbN’∆p further increased the protein yield. Enhancing positive charges at sites 4 and 10 and decreasing the hydrophobicity of the H -region of YwbN’∆p were critical for improving alkaline α-amylase production in B . subtilis 168 M . P HpaII was the optimal promoter, and deleting − 27T or − 31A from P HpaII enhanced the transcription of the target gene. Using a single-pulse feeding-based fed-batch system, alkaline α-amylase activity of B . subtilis 168 M P ∆−27T was increased by 250.6-fold, compared with B . subtilis 168 M A1.</description><subject>Amylases</subject><subject>Arginine</subject><subject>Bacillus subtilis</subject><subject>Batch culture</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>Hydrophobicity</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Peptides</subject><subject>Transcription</subject><subject>Transport</subject><subject>α-Amylase</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1TAQhS0EopcLL8ACWWLDxjC2Y8dZQsWfVIlFy9qyfZ3KxbGDnSxu34oX6TPhNgUkFl2NRvOdM6M5CL2k8JYC9O8qABOcAANCoeOCXD9CO9pxRkDS7jHaAe0F6cWgTtCzWq8AKFNSPkUnnDWeKrVD5fxYFz-ZJTjs02VI3peQLnEe8VJMqnMuCzbpsHWuhHkJOeElY5tzbaP4w8Smwje_iJmO0VSP55IPq7vjQsIfjAsxrhXX1S4hhvocPRlNrP7Ffd2j758-Xpx-IWffPn89fX9GHO_FQhSVg_G94hz6cVRcsvFgGAxOCAVSyMFJa6ltRRnaiYGqQXZS2dFZyywA36M3m2-75-fq66KnUJ2P0SSf16oZF1woxYa-oa__Q6_yWlK7rlF9B4Po21_3iG2UK7nW4kc9lzCZctQU9G0iektEt0T0XSL6uole3VuvdvKHv5I_ETSAb0Cdbz_vy7_dD9j-BoAcmMM</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Yang, Haiquan</creator><creator>Ma, Yingfang</creator><creator>Zhao, Yuan</creator><creator>Shen, Wei</creator><creator>Chen, Xianzhong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6173-8787</orcidid></search><sort><creationdate>20200401</creationdate><title>Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis</title><author>Yang, Haiquan ; Ma, Yingfang ; Zhao, Yuan ; Shen, Wei ; Chen, Xianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8169ae783307ff8362fda209c55806569c6bb1b9c68a14591896468bfcbb2b003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amylases</topic><topic>Arginine</topic><topic>Bacillus subtilis</topic><topic>Batch culture</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>Hydrophobicity</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Peptides</topic><topic>Transcription</topic><topic>Transport</topic><topic>α-Amylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Haiquan</creatorcontrib><creatorcontrib>Ma, Yingfang</creatorcontrib><creatorcontrib>Zhao, Yuan</creatorcontrib><creatorcontrib>Shen, Wei</creatorcontrib><creatorcontrib>Chen, Xianzhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Haiquan</au><au>Ma, Yingfang</au><au>Zhao, Yuan</au><au>Shen, Wei</au><au>Chen, Xianzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>104</volume><issue>7</issue><spage>2973</spage><epage>2985</epage><pages>2973-2985</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>In the present work, we used systematic engineering at transport and transcription levels to significantly enhance alkaline α-amylase production in Bacillus subtilis 168 M . Signal peptide YwbN’ proved to be optimal. Alkaline α-amylase production was elevated by deleting a putative peptide segment of YwbN’. Insertion of arginine (R) between residues 5 and 6 of YwbN’∆p further increased the protein yield. Enhancing positive charges at sites 4 and 10 and decreasing the hydrophobicity of the H -region of YwbN’∆p were critical for improving alkaline α-amylase production in B . subtilis 168 M . P HpaII was the optimal promoter, and deleting − 27T or − 31A from P HpaII enhanced the transcription of the target gene. Using a single-pulse feeding-based fed-batch system, alkaline α-amylase activity of B . subtilis 168 M P ∆−27T was increased by 250.6-fold, compared with B . subtilis 168 M A1.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32043188</pmid><doi>10.1007/s00253-020-10435-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6173-8787</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2020-04, Vol.104 (7), p.2973-2985
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_2353588297
source SpringerLink Journals - AutoHoldings
subjects Amylases
Arginine
Bacillus subtilis
Batch culture
Biomedical and Life Sciences
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
Hydrophobicity
Life Sciences
Microbial Genetics and Genomics
Microbiology
Peptides
Transcription
Transport
α-Amylase
title Systematic engineering of transport and transcription to boost alkaline α-amylase production in Bacillus subtilis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20engineering%20of%20transport%20and%20transcription%20to%20boost%20alkaline%20%CE%B1-amylase%20production%20in%20Bacillus%20subtilis&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Yang,%20Haiquan&rft.date=2020-04-01&rft.volume=104&rft.issue=7&rft.spage=2973&rft.epage=2985&rft.pages=2973-2985&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10435-z&rft_dat=%3Cproquest_cross%3E2353588297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374095714&rft_id=info:pmid/32043188&rfr_iscdi=true