Extraction of nanostructured sodium nitrate from industrial effluent and their thermal properties
This study describes a process of extraction of high purity sodium nitrate from corrosive chemical industry effluents. Here, we have designed a process to convert highly corrosive effluents of ceramic industries having pH ~13.1 into sodium nitrate nanoparticles. The extraction of sodium nitrate has...
Gespeichert in:
Veröffentlicht in: | Water environment research 2020-08, Vol.92 (8), p.1123-1130 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1130 |
---|---|
container_issue | 8 |
container_start_page | 1123 |
container_title | Water environment research |
container_volume | 92 |
creator | Yadav, Krishna K. Sharma, Manu Jha, Menaka |
description | This study describes a process of extraction of high purity sodium nitrate from corrosive chemical industry effluents. Here, we have designed a process to convert highly corrosive effluents of ceramic industries having pH ~13.1 into sodium nitrate nanoparticles. The extraction of sodium nitrate has been carried out via neutralization of industrial effluent by nitric acid. We have also studied the effect of low boiling point co‐solvent during recrystallization of sodium nitrate. TEM studies of sodium nitrate extracted from the filtrate in the absence of co‐solvent show the formation of nanoparticle of ~70 nm. Further, a drastic decrease in particle size to 10 nm has been observed when co‐solvents (methanol, ethanol, and acetone) were used in combination with filtrate during the recrystallization process of sodium nitrate. Thermal properties of sodium nitrate extracted from filtrate have been investigated. Our result indicates that the nanoparticles extracted from filtrate having very high heat storage density (453 J/g) without hampering the melting point and boiling point of the materials.
Practitioner points
The new chemical process has been developed to treat the industrial effluent
Extraction of nanostructured sodium nitrate has been carried from industrial effluent
The particle size of sodium nitrate drastically influenced by the used co‐solvent for recrystallization
The highest heat storage density is 453 J/g, which was obtained from the recrystallization of the filtrate
Conversion of corrosive industrial effluent into sodium nitrate nanostructures and their application in heat storage. |
doi_str_mv | 10.1002/wer.1307 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2353581697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353581697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3867-3a0c6860ed778c2cb9ca5cfceb35f760dab772b3a12a91d90709422ba360796d3</originalsourceid><addsrcrecordid>eNp1kF1rFTEQhoMotlbBXyABb3qzdZLsJruXUo61UBCkxcuQTWYxZTc55oPaf2-OrRYEb2YG5uGZ4SXkLYMzBsA_3GE6YwLUM3LMhqHv1CDY8zaDZF0vQByRVznfAjDOoX9JjkRrMEpxTMzuZ0nGFh8DjQsNJsRcUrWlJnQ0R-frRoNvTEG6pLhRH1xtiDcrxWVZK4ZCTXC0fEefDjVtbbVPcY-peMyvyYvFrBnfPPYTcvNpd33-ubv6cnF5_vGqs2KUqhMGrBwloFNqtNzOkzWDXSzOYliUBGdmpfgsDONmYm4CBVPP-WyEBDVJJ07I6YO3nf5RMRe9-WxxXU3AWLPmYhDDyOSkGvr-H_Q21hTad5r3XPZsAMaehDbFnBMuep_8ZtK9ZqAPsesWuz7E3tB3j8I6b-j-gn9ybkD3ANz5Fe__K9Lfdl9_C38Ba3eMqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426415011</pqid></control><display><type>article</type><title>Extraction of nanostructured sodium nitrate from industrial effluent and their thermal properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yadav, Krishna K. ; Sharma, Manu ; Jha, Menaka</creator><creatorcontrib>Yadav, Krishna K. ; Sharma, Manu ; Jha, Menaka</creatorcontrib><description>This study describes a process of extraction of high purity sodium nitrate from corrosive chemical industry effluents. Here, we have designed a process to convert highly corrosive effluents of ceramic industries having pH ~13.1 into sodium nitrate nanoparticles. The extraction of sodium nitrate has been carried out via neutralization of industrial effluent by nitric acid. We have also studied the effect of low boiling point co‐solvent during recrystallization of sodium nitrate. TEM studies of sodium nitrate extracted from the filtrate in the absence of co‐solvent show the formation of nanoparticle of ~70 nm. Further, a drastic decrease in particle size to 10 nm has been observed when co‐solvents (methanol, ethanol, and acetone) were used in combination with filtrate during the recrystallization process of sodium nitrate. Thermal properties of sodium nitrate extracted from filtrate have been investigated. Our result indicates that the nanoparticles extracted from filtrate having very high heat storage density (453 J/g) without hampering the melting point and boiling point of the materials.
Practitioner points
The new chemical process has been developed to treat the industrial effluent
Extraction of nanostructured sodium nitrate has been carried from industrial effluent
The particle size of sodium nitrate drastically influenced by the used co‐solvent for recrystallization
The highest heat storage density is 453 J/g, which was obtained from the recrystallization of the filtrate
Conversion of corrosive industrial effluent into sodium nitrate nanostructures and their application in heat storage.</description><identifier>ISSN: 1061-4303</identifier><identifier>EISSN: 1554-7531</identifier><identifier>DOI: 10.1002/wer.1307</identifier><identifier>PMID: 32040863</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Acetone ; Boiling ; Boiling point ; Boiling points ; Ceramics industry ; Chemical industry ; Corrosion ; Density ; Effluents ; Ethanol ; Filtrate ; Food service ; Heat storage ; Industrial effluents ; industrial waste ; Industrial wastes ; Industrial wastewater ; Industry ; Meat products ; Melting point ; Melting points ; Nanoparticles ; Nanostructure ; Neutralization ; Nitrates ; Nitric acid ; Nitric acids ; Particle size ; physical and chemical treatment ; Properties ; Recrystallization ; remediation ; reuse ; Sodium ; Sodium nitrate ; Solvents ; Thermal properties ; Thermodynamic properties</subject><ispartof>Water environment research, 2020-08, Vol.92 (8), p.1123-1130</ispartof><rights>2020 Water Environment Federation</rights><rights>2020 Water Environment Federation.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3867-3a0c6860ed778c2cb9ca5cfceb35f760dab772b3a12a91d90709422ba360796d3</citedby><cites>FETCH-LOGICAL-c3867-3a0c6860ed778c2cb9ca5cfceb35f760dab772b3a12a91d90709422ba360796d3</cites><orcidid>0000-0002-8161-210X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwer.1307$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwer.1307$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32040863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yadav, Krishna K.</creatorcontrib><creatorcontrib>Sharma, Manu</creatorcontrib><creatorcontrib>Jha, Menaka</creatorcontrib><title>Extraction of nanostructured sodium nitrate from industrial effluent and their thermal properties</title><title>Water environment research</title><addtitle>Water Environ Res</addtitle><description>This study describes a process of extraction of high purity sodium nitrate from corrosive chemical industry effluents. Here, we have designed a process to convert highly corrosive effluents of ceramic industries having pH ~13.1 into sodium nitrate nanoparticles. The extraction of sodium nitrate has been carried out via neutralization of industrial effluent by nitric acid. We have also studied the effect of low boiling point co‐solvent during recrystallization of sodium nitrate. TEM studies of sodium nitrate extracted from the filtrate in the absence of co‐solvent show the formation of nanoparticle of ~70 nm. Further, a drastic decrease in particle size to 10 nm has been observed when co‐solvents (methanol, ethanol, and acetone) were used in combination with filtrate during the recrystallization process of sodium nitrate. Thermal properties of sodium nitrate extracted from filtrate have been investigated. Our result indicates that the nanoparticles extracted from filtrate having very high heat storage density (453 J/g) without hampering the melting point and boiling point of the materials.
Practitioner points
The new chemical process has been developed to treat the industrial effluent
Extraction of nanostructured sodium nitrate has been carried from industrial effluent
The particle size of sodium nitrate drastically influenced by the used co‐solvent for recrystallization
The highest heat storage density is 453 J/g, which was obtained from the recrystallization of the filtrate
Conversion of corrosive industrial effluent into sodium nitrate nanostructures and their application in heat storage.</description><subject>Acetone</subject><subject>Boiling</subject><subject>Boiling point</subject><subject>Boiling points</subject><subject>Ceramics industry</subject><subject>Chemical industry</subject><subject>Corrosion</subject><subject>Density</subject><subject>Effluents</subject><subject>Ethanol</subject><subject>Filtrate</subject><subject>Food service</subject><subject>Heat storage</subject><subject>Industrial effluents</subject><subject>industrial waste</subject><subject>Industrial wastes</subject><subject>Industrial wastewater</subject><subject>Industry</subject><subject>Meat products</subject><subject>Melting point</subject><subject>Melting points</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Neutralization</subject><subject>Nitrates</subject><subject>Nitric acid</subject><subject>Nitric acids</subject><subject>Particle size</subject><subject>physical and chemical treatment</subject><subject>Properties</subject><subject>Recrystallization</subject><subject>remediation</subject><subject>reuse</subject><subject>Sodium</subject><subject>Sodium nitrate</subject><subject>Solvents</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><issn>1061-4303</issn><issn>1554-7531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF1rFTEQhoMotlbBXyABb3qzdZLsJruXUo61UBCkxcuQTWYxZTc55oPaf2-OrRYEb2YG5uGZ4SXkLYMzBsA_3GE6YwLUM3LMhqHv1CDY8zaDZF0vQByRVznfAjDOoX9JjkRrMEpxTMzuZ0nGFh8DjQsNJsRcUrWlJnQ0R-frRoNvTEG6pLhRH1xtiDcrxWVZK4ZCTXC0fEefDjVtbbVPcY-peMyvyYvFrBnfPPYTcvNpd33-ubv6cnF5_vGqs2KUqhMGrBwloFNqtNzOkzWDXSzOYliUBGdmpfgsDONmYm4CBVPP-WyEBDVJJ07I6YO3nf5RMRe9-WxxXU3AWLPmYhDDyOSkGvr-H_Q21hTad5r3XPZsAMaehDbFnBMuep_8ZtK9ZqAPsesWuz7E3tB3j8I6b-j-gn9ybkD3ANz5Fe__K9Lfdl9_C38Ba3eMqw</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Yadav, Krishna K.</creator><creator>Sharma, Manu</creator><creator>Jha, Menaka</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8161-210X</orcidid></search><sort><creationdate>202008</creationdate><title>Extraction of nanostructured sodium nitrate from industrial effluent and their thermal properties</title><author>Yadav, Krishna K. ; Sharma, Manu ; Jha, Menaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3867-3a0c6860ed778c2cb9ca5cfceb35f760dab772b3a12a91d90709422ba360796d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetone</topic><topic>Boiling</topic><topic>Boiling point</topic><topic>Boiling points</topic><topic>Ceramics industry</topic><topic>Chemical industry</topic><topic>Corrosion</topic><topic>Density</topic><topic>Effluents</topic><topic>Ethanol</topic><topic>Filtrate</topic><topic>Food service</topic><topic>Heat storage</topic><topic>Industrial effluents</topic><topic>industrial waste</topic><topic>Industrial wastes</topic><topic>Industrial wastewater</topic><topic>Industry</topic><topic>Meat products</topic><topic>Melting point</topic><topic>Melting points</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Neutralization</topic><topic>Nitrates</topic><topic>Nitric acid</topic><topic>Nitric acids</topic><topic>Particle size</topic><topic>physical and chemical treatment</topic><topic>Properties</topic><topic>Recrystallization</topic><topic>remediation</topic><topic>reuse</topic><topic>Sodium</topic><topic>Sodium nitrate</topic><topic>Solvents</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Krishna K.</creatorcontrib><creatorcontrib>Sharma, Manu</creatorcontrib><creatorcontrib>Jha, Menaka</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Water environment research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Krishna K.</au><au>Sharma, Manu</au><au>Jha, Menaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction of nanostructured sodium nitrate from industrial effluent and their thermal properties</atitle><jtitle>Water environment research</jtitle><addtitle>Water Environ Res</addtitle><date>2020-08</date><risdate>2020</risdate><volume>92</volume><issue>8</issue><spage>1123</spage><epage>1130</epage><pages>1123-1130</pages><issn>1061-4303</issn><eissn>1554-7531</eissn><abstract>This study describes a process of extraction of high purity sodium nitrate from corrosive chemical industry effluents. Here, we have designed a process to convert highly corrosive effluents of ceramic industries having pH ~13.1 into sodium nitrate nanoparticles. The extraction of sodium nitrate has been carried out via neutralization of industrial effluent by nitric acid. We have also studied the effect of low boiling point co‐solvent during recrystallization of sodium nitrate. TEM studies of sodium nitrate extracted from the filtrate in the absence of co‐solvent show the formation of nanoparticle of ~70 nm. Further, a drastic decrease in particle size to 10 nm has been observed when co‐solvents (methanol, ethanol, and acetone) were used in combination with filtrate during the recrystallization process of sodium nitrate. Thermal properties of sodium nitrate extracted from filtrate have been investigated. Our result indicates that the nanoparticles extracted from filtrate having very high heat storage density (453 J/g) without hampering the melting point and boiling point of the materials.
Practitioner points
The new chemical process has been developed to treat the industrial effluent
Extraction of nanostructured sodium nitrate has been carried from industrial effluent
The particle size of sodium nitrate drastically influenced by the used co‐solvent for recrystallization
The highest heat storage density is 453 J/g, which was obtained from the recrystallization of the filtrate
Conversion of corrosive industrial effluent into sodium nitrate nanostructures and their application in heat storage.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>32040863</pmid><doi>10.1002/wer.1307</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8161-210X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4303 |
ispartof | Water environment research, 2020-08, Vol.92 (8), p.1123-1130 |
issn | 1061-4303 1554-7531 |
language | eng |
recordid | cdi_proquest_miscellaneous_2353581697 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acetone Boiling Boiling point Boiling points Ceramics industry Chemical industry Corrosion Density Effluents Ethanol Filtrate Food service Heat storage Industrial effluents industrial waste Industrial wastes Industrial wastewater Industry Meat products Melting point Melting points Nanoparticles Nanostructure Neutralization Nitrates Nitric acid Nitric acids Particle size physical and chemical treatment Properties Recrystallization remediation reuse Sodium Sodium nitrate Solvents Thermal properties Thermodynamic properties |
title | Extraction of nanostructured sodium nitrate from industrial effluent and their thermal properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20of%20nanostructured%20sodium%20nitrate%20from%20industrial%20effluent%20and%20their%20thermal%20properties&rft.jtitle=Water%20environment%20research&rft.au=Yadav,%20Krishna%20K.&rft.date=2020-08&rft.volume=92&rft.issue=8&rft.spage=1123&rft.epage=1130&rft.pages=1123-1130&rft.issn=1061-4303&rft.eissn=1554-7531&rft_id=info:doi/10.1002/wer.1307&rft_dat=%3Cproquest_cross%3E2353581697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426415011&rft_id=info:pmid/32040863&rfr_iscdi=true |