Extraction of nanostructured sodium nitrate from industrial effluent and their thermal properties

This study describes a process of extraction of high purity sodium nitrate from corrosive chemical industry effluents. Here, we have designed a process to convert highly corrosive effluents of ceramic industries having pH ~13.1 into sodium nitrate nanoparticles. The extraction of sodium nitrate has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water environment research 2020-08, Vol.92 (8), p.1123-1130
Hauptverfasser: Yadav, Krishna K., Sharma, Manu, Jha, Menaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1130
container_issue 8
container_start_page 1123
container_title Water environment research
container_volume 92
creator Yadav, Krishna K.
Sharma, Manu
Jha, Menaka
description This study describes a process of extraction of high purity sodium nitrate from corrosive chemical industry effluents. Here, we have designed a process to convert highly corrosive effluents of ceramic industries having pH ~13.1 into sodium nitrate nanoparticles. The extraction of sodium nitrate has been carried out via neutralization of industrial effluent by nitric acid. We have also studied the effect of low boiling point co‐solvent during recrystallization of sodium nitrate. TEM studies of sodium nitrate extracted from the filtrate in the absence of co‐solvent show the formation of nanoparticle of ~70 nm. Further, a drastic decrease in particle size to 10 nm has been observed when co‐solvents (methanol, ethanol, and acetone) were used in combination with filtrate during the recrystallization process of sodium nitrate. Thermal properties of sodium nitrate extracted from filtrate have been investigated. Our result indicates that the nanoparticles extracted from filtrate having very high heat storage density (453 J/g) without hampering the melting point and boiling point of the materials. Practitioner points The new chemical process has been developed to treat the industrial effluent Extraction of nanostructured sodium nitrate has been carried from industrial effluent The particle size of sodium nitrate drastically influenced by the used co‐solvent for recrystallization The highest heat storage density is 453 J/g, which was obtained from the recrystallization of the filtrate Conversion of corrosive industrial effluent into sodium nitrate nanostructures and their application in heat storage.
doi_str_mv 10.1002/wer.1307
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2353581697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353581697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3867-3a0c6860ed778c2cb9ca5cfceb35f760dab772b3a12a91d90709422ba360796d3</originalsourceid><addsrcrecordid>eNp1kF1rFTEQhoMotlbBXyABb3qzdZLsJruXUo61UBCkxcuQTWYxZTc55oPaf2-OrRYEb2YG5uGZ4SXkLYMzBsA_3GE6YwLUM3LMhqHv1CDY8zaDZF0vQByRVznfAjDOoX9JjkRrMEpxTMzuZ0nGFh8DjQsNJsRcUrWlJnQ0R-frRoNvTEG6pLhRH1xtiDcrxWVZK4ZCTXC0fEefDjVtbbVPcY-peMyvyYvFrBnfPPYTcvNpd33-ubv6cnF5_vGqs2KUqhMGrBwloFNqtNzOkzWDXSzOYliUBGdmpfgsDONmYm4CBVPP-WyEBDVJJ07I6YO3nf5RMRe9-WxxXU3AWLPmYhDDyOSkGvr-H_Q21hTad5r3XPZsAMaehDbFnBMuep_8ZtK9ZqAPsesWuz7E3tB3j8I6b-j-gn9ybkD3ANz5Fe__K9Lfdl9_C38Ba3eMqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426415011</pqid></control><display><type>article</type><title>Extraction of nanostructured sodium nitrate from industrial effluent and their thermal properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yadav, Krishna K. ; Sharma, Manu ; Jha, Menaka</creator><creatorcontrib>Yadav, Krishna K. ; Sharma, Manu ; Jha, Menaka</creatorcontrib><description>This study describes a process of extraction of high purity sodium nitrate from corrosive chemical industry effluents. Here, we have designed a process to convert highly corrosive effluents of ceramic industries having pH ~13.1 into sodium nitrate nanoparticles. The extraction of sodium nitrate has been carried out via neutralization of industrial effluent by nitric acid. We have also studied the effect of low boiling point co‐solvent during recrystallization of sodium nitrate. TEM studies of sodium nitrate extracted from the filtrate in the absence of co‐solvent show the formation of nanoparticle of ~70 nm. Further, a drastic decrease in particle size to 10 nm has been observed when co‐solvents (methanol, ethanol, and acetone) were used in combination with filtrate during the recrystallization process of sodium nitrate. Thermal properties of sodium nitrate extracted from filtrate have been investigated. Our result indicates that the nanoparticles extracted from filtrate having very high heat storage density (453 J/g) without hampering the melting point and boiling point of the materials. Practitioner points The new chemical process has been developed to treat the industrial effluent Extraction of nanostructured sodium nitrate has been carried from industrial effluent The particle size of sodium nitrate drastically influenced by the used co‐solvent for recrystallization The highest heat storage density is 453 J/g, which was obtained from the recrystallization of the filtrate Conversion of corrosive industrial effluent into sodium nitrate nanostructures and their application in heat storage.</description><identifier>ISSN: 1061-4303</identifier><identifier>EISSN: 1554-7531</identifier><identifier>DOI: 10.1002/wer.1307</identifier><identifier>PMID: 32040863</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Acetone ; Boiling ; Boiling point ; Boiling points ; Ceramics industry ; Chemical industry ; Corrosion ; Density ; Effluents ; Ethanol ; Filtrate ; Food service ; Heat storage ; Industrial effluents ; industrial waste ; Industrial wastes ; Industrial wastewater ; Industry ; Meat products ; Melting point ; Melting points ; Nanoparticles ; Nanostructure ; Neutralization ; Nitrates ; Nitric acid ; Nitric acids ; Particle size ; physical and chemical treatment ; Properties ; Recrystallization ; remediation ; reuse ; Sodium ; Sodium nitrate ; Solvents ; Thermal properties ; Thermodynamic properties</subject><ispartof>Water environment research, 2020-08, Vol.92 (8), p.1123-1130</ispartof><rights>2020 Water Environment Federation</rights><rights>2020 Water Environment Federation.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3867-3a0c6860ed778c2cb9ca5cfceb35f760dab772b3a12a91d90709422ba360796d3</citedby><cites>FETCH-LOGICAL-c3867-3a0c6860ed778c2cb9ca5cfceb35f760dab772b3a12a91d90709422ba360796d3</cites><orcidid>0000-0002-8161-210X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwer.1307$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwer.1307$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32040863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yadav, Krishna K.</creatorcontrib><creatorcontrib>Sharma, Manu</creatorcontrib><creatorcontrib>Jha, Menaka</creatorcontrib><title>Extraction of nanostructured sodium nitrate from industrial effluent and their thermal properties</title><title>Water environment research</title><addtitle>Water Environ Res</addtitle><description>This study describes a process of extraction of high purity sodium nitrate from corrosive chemical industry effluents. Here, we have designed a process to convert highly corrosive effluents of ceramic industries having pH ~13.1 into sodium nitrate nanoparticles. The extraction of sodium nitrate has been carried out via neutralization of industrial effluent by nitric acid. We have also studied the effect of low boiling point co‐solvent during recrystallization of sodium nitrate. TEM studies of sodium nitrate extracted from the filtrate in the absence of co‐solvent show the formation of nanoparticle of ~70 nm. Further, a drastic decrease in particle size to 10 nm has been observed when co‐solvents (methanol, ethanol, and acetone) were used in combination with filtrate during the recrystallization process of sodium nitrate. Thermal properties of sodium nitrate extracted from filtrate have been investigated. Our result indicates that the nanoparticles extracted from filtrate having very high heat storage density (453 J/g) without hampering the melting point and boiling point of the materials. Practitioner points The new chemical process has been developed to treat the industrial effluent Extraction of nanostructured sodium nitrate has been carried from industrial effluent The particle size of sodium nitrate drastically influenced by the used co‐solvent for recrystallization The highest heat storage density is 453 J/g, which was obtained from the recrystallization of the filtrate Conversion of corrosive industrial effluent into sodium nitrate nanostructures and their application in heat storage.</description><subject>Acetone</subject><subject>Boiling</subject><subject>Boiling point</subject><subject>Boiling points</subject><subject>Ceramics industry</subject><subject>Chemical industry</subject><subject>Corrosion</subject><subject>Density</subject><subject>Effluents</subject><subject>Ethanol</subject><subject>Filtrate</subject><subject>Food service</subject><subject>Heat storage</subject><subject>Industrial effluents</subject><subject>industrial waste</subject><subject>Industrial wastes</subject><subject>Industrial wastewater</subject><subject>Industry</subject><subject>Meat products</subject><subject>Melting point</subject><subject>Melting points</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Neutralization</subject><subject>Nitrates</subject><subject>Nitric acid</subject><subject>Nitric acids</subject><subject>Particle size</subject><subject>physical and chemical treatment</subject><subject>Properties</subject><subject>Recrystallization</subject><subject>remediation</subject><subject>reuse</subject><subject>Sodium</subject><subject>Sodium nitrate</subject><subject>Solvents</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><issn>1061-4303</issn><issn>1554-7531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF1rFTEQhoMotlbBXyABb3qzdZLsJruXUo61UBCkxcuQTWYxZTc55oPaf2-OrRYEb2YG5uGZ4SXkLYMzBsA_3GE6YwLUM3LMhqHv1CDY8zaDZF0vQByRVznfAjDOoX9JjkRrMEpxTMzuZ0nGFh8DjQsNJsRcUrWlJnQ0R-frRoNvTEG6pLhRH1xtiDcrxWVZK4ZCTXC0fEefDjVtbbVPcY-peMyvyYvFrBnfPPYTcvNpd33-ubv6cnF5_vGqs2KUqhMGrBwloFNqtNzOkzWDXSzOYliUBGdmpfgsDONmYm4CBVPP-WyEBDVJJ07I6YO3nf5RMRe9-WxxXU3AWLPmYhDDyOSkGvr-H_Q21hTad5r3XPZsAMaehDbFnBMuep_8ZtK9ZqAPsesWuz7E3tB3j8I6b-j-gn9ybkD3ANz5Fe__K9Lfdl9_C38Ba3eMqw</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Yadav, Krishna K.</creator><creator>Sharma, Manu</creator><creator>Jha, Menaka</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8161-210X</orcidid></search><sort><creationdate>202008</creationdate><title>Extraction of nanostructured sodium nitrate from industrial effluent and their thermal properties</title><author>Yadav, Krishna K. ; Sharma, Manu ; Jha, Menaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3867-3a0c6860ed778c2cb9ca5cfceb35f760dab772b3a12a91d90709422ba360796d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetone</topic><topic>Boiling</topic><topic>Boiling point</topic><topic>Boiling points</topic><topic>Ceramics industry</topic><topic>Chemical industry</topic><topic>Corrosion</topic><topic>Density</topic><topic>Effluents</topic><topic>Ethanol</topic><topic>Filtrate</topic><topic>Food service</topic><topic>Heat storage</topic><topic>Industrial effluents</topic><topic>industrial waste</topic><topic>Industrial wastes</topic><topic>Industrial wastewater</topic><topic>Industry</topic><topic>Meat products</topic><topic>Melting point</topic><topic>Melting points</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Neutralization</topic><topic>Nitrates</topic><topic>Nitric acid</topic><topic>Nitric acids</topic><topic>Particle size</topic><topic>physical and chemical treatment</topic><topic>Properties</topic><topic>Recrystallization</topic><topic>remediation</topic><topic>reuse</topic><topic>Sodium</topic><topic>Sodium nitrate</topic><topic>Solvents</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Krishna K.</creatorcontrib><creatorcontrib>Sharma, Manu</creatorcontrib><creatorcontrib>Jha, Menaka</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Water environment research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Krishna K.</au><au>Sharma, Manu</au><au>Jha, Menaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction of nanostructured sodium nitrate from industrial effluent and their thermal properties</atitle><jtitle>Water environment research</jtitle><addtitle>Water Environ Res</addtitle><date>2020-08</date><risdate>2020</risdate><volume>92</volume><issue>8</issue><spage>1123</spage><epage>1130</epage><pages>1123-1130</pages><issn>1061-4303</issn><eissn>1554-7531</eissn><abstract>This study describes a process of extraction of high purity sodium nitrate from corrosive chemical industry effluents. Here, we have designed a process to convert highly corrosive effluents of ceramic industries having pH ~13.1 into sodium nitrate nanoparticles. The extraction of sodium nitrate has been carried out via neutralization of industrial effluent by nitric acid. We have also studied the effect of low boiling point co‐solvent during recrystallization of sodium nitrate. TEM studies of sodium nitrate extracted from the filtrate in the absence of co‐solvent show the formation of nanoparticle of ~70 nm. Further, a drastic decrease in particle size to 10 nm has been observed when co‐solvents (methanol, ethanol, and acetone) were used in combination with filtrate during the recrystallization process of sodium nitrate. Thermal properties of sodium nitrate extracted from filtrate have been investigated. Our result indicates that the nanoparticles extracted from filtrate having very high heat storage density (453 J/g) without hampering the melting point and boiling point of the materials. Practitioner points The new chemical process has been developed to treat the industrial effluent Extraction of nanostructured sodium nitrate has been carried from industrial effluent The particle size of sodium nitrate drastically influenced by the used co‐solvent for recrystallization The highest heat storage density is 453 J/g, which was obtained from the recrystallization of the filtrate Conversion of corrosive industrial effluent into sodium nitrate nanostructures and their application in heat storage.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>32040863</pmid><doi>10.1002/wer.1307</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8161-210X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1061-4303
ispartof Water environment research, 2020-08, Vol.92 (8), p.1123-1130
issn 1061-4303
1554-7531
language eng
recordid cdi_proquest_miscellaneous_2353581697
source Wiley Online Library Journals Frontfile Complete
subjects Acetone
Boiling
Boiling point
Boiling points
Ceramics industry
Chemical industry
Corrosion
Density
Effluents
Ethanol
Filtrate
Food service
Heat storage
Industrial effluents
industrial waste
Industrial wastes
Industrial wastewater
Industry
Meat products
Melting point
Melting points
Nanoparticles
Nanostructure
Neutralization
Nitrates
Nitric acid
Nitric acids
Particle size
physical and chemical treatment
Properties
Recrystallization
remediation
reuse
Sodium
Sodium nitrate
Solvents
Thermal properties
Thermodynamic properties
title Extraction of nanostructured sodium nitrate from industrial effluent and their thermal properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20of%20nanostructured%20sodium%20nitrate%20from%20industrial%20effluent%20and%20their%20thermal%20properties&rft.jtitle=Water%20environment%20research&rft.au=Yadav,%20Krishna%20K.&rft.date=2020-08&rft.volume=92&rft.issue=8&rft.spage=1123&rft.epage=1130&rft.pages=1123-1130&rft.issn=1061-4303&rft.eissn=1554-7531&rft_id=info:doi/10.1002/wer.1307&rft_dat=%3Cproquest_cross%3E2353581697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426415011&rft_id=info:pmid/32040863&rfr_iscdi=true