Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor
The mainstream anaerobic ammonium oxidation (anammox) process provides strong support to the on-going paradigm shift from energy-negative to energy-neutral in wastewater treatment plants. However, the low temperature (e.g., below 15 °C) represents one of the major challenges for mainstream anammox i...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2020-03, Vol.54 (5), p.3012-3021 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3021 |
---|---|
container_issue | 5 |
container_start_page | 3012 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Liu, Tao Khai Lim, Zhuan Chen, Hui Hu, Shihu Yuan, Zhiguo Guo, Jianhua |
description | The mainstream anaerobic ammonium oxidation (anammox) process provides strong support to the on-going paradigm shift from energy-negative to energy-neutral in wastewater treatment plants. However, the low temperature (e.g., below 15 °C) represents one of the major challenges for mainstream anammox in practice. In this study, a stable nitrogen removal rate (0.13 kg m–3 day–1), together with a high-level effluent quality ( |
doi_str_mv | 10.1021/acs.est.9b05650 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2353011635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353011635</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-8244bd2836c446e89be24cc6ea7b650eb479bcb379441614a7de2504db5fd8343</originalsourceid><addsrcrecordid>eNp1kU1rVDEUhoNY7Di6dicBN0K5M_m8H8taqxZaCzKCu0uSe0ZTbpJpkivt__AHm-tMuyi4esPJ855zOC9CbyhZUcLoWpm0gpRXnSayluQZWlDJSCVbSZ-jBSGUVx2vfxyjlyndEEIYJ-0LdMwZ4U3T1Qv0ZwNuB1HlKUK1CeP8hAFfKetTjqAc_mpzDD_B42_gwm81Yn2PT71yLtxh5Yd__zbDetbirT7CDvwAPs8UxKCtwVeQfykP-PrODirb4LH1WJWy03Guf7Bha0dXRiiTQ3yFjrZqTPD6oEv0_dP55uxLdXn9-eLs9LJSvGtz1TIh9MBaXhshamg7DUwYU4NqdDkGaNF02mjedELQmgrVDMAkEYOW26Hlgi_R-33fXQy3U7lj72wyMI5lpzClnnHJCaV1kSV69wS9CVP0ZbtCNW3XMSlZodZ7ysSQUoRtv4vWqXjfU9LPgfUlsH52HwIrjreHvpN2MDzyDwkV4GQPzM7Hmf9r9xcEbaKn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378992552</pqid></control><display><type>article</type><title>Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor</title><source>MEDLINE</source><source>ACS Publications</source><creator>Liu, Tao ; Khai Lim, Zhuan ; Chen, Hui ; Hu, Shihu ; Yuan, Zhiguo ; Guo, Jianhua</creator><creatorcontrib>Liu, Tao ; Khai Lim, Zhuan ; Chen, Hui ; Hu, Shihu ; Yuan, Zhiguo ; Guo, Jianhua</creatorcontrib><description>The mainstream anaerobic ammonium oxidation (anammox) process provides strong support to the on-going paradigm shift from energy-negative to energy-neutral in wastewater treatment plants. However, the low temperature (e.g., below 15 °C) represents one of the major challenges for mainstream anammox in practice. In this study, a stable nitrogen removal rate (0.13 kg m–3 day–1), together with a high-level effluent quality (<5.0 mg N L–1), was achieved in a lab-scale upflow membrane biofilm reactor (MBfR) by coupling anammox with nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) microorganisms, at a temperature as low as 10 °C. With the temperature being progressively decreased from 25 to 10 °C, the total nitrogen removal efficiency was maintained in the range of 90–94% at a constant hydraulic retention time of 9 h. The impact of temperature on the biofilm system coupling anammox and n-DAMO reactions increased at a lower temperature range with higher Arrhenius coefficients. Additionally, 16S rRNA gene sequencing results showed that anammox bacteria, n-DAMO bacteria, and n-DAMO archaea jointly dominated the biofilm, and their respective abundances remained relatively stable when the temperature was decreased. The major reason for this temperature-tolerated performance is the overcapacity developed, which is indicated by biofilm thickness measurements and mathematical modeling. The stable performance obtained in this study shows promise for the n-DAMO application in domestic wastewater.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b05650</identifier><identifier>PMID: 32037796</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Ammonia-oxidizing bacteria ; Ammonium ; Ammonium Compounds ; Anaerobic microorganisms ; Anaerobic processes ; Anaerobiosis ; Archaea ; Bacteria ; Biofilms ; Bioreactors ; Coupling ; Denitrification ; Domestic wastewater ; Gene sequencing ; Hydraulic retention time ; Low temperature ; Mathematical models ; Membranes ; Methane ; Microorganisms ; Nitrites ; Nitrogen ; Nitrogen removal ; Oxidation ; Oxidation-Reduction ; Reactors ; Retention time ; RNA, Ribosomal, 16S ; rRNA 16S ; Temperature ; Thickness measurement ; Wastewater treatment ; Wastewater treatment plants</subject><ispartof>Environmental science & technology, 2020-03, Vol.54 (5), p.3012-3021</ispartof><rights>Copyright American Chemical Society Mar 3, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-8244bd2836c446e89be24cc6ea7b650eb479bcb379441614a7de2504db5fd8343</citedby><cites>FETCH-LOGICAL-a398t-8244bd2836c446e89be24cc6ea7b650eb479bcb379441614a7de2504db5fd8343</cites><orcidid>0000-0001-6145-8865 ; 0000-0001-7673-747X ; 0000-0002-4732-9175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b05650$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b05650$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32037796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Khai Lim, Zhuan</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Hu, Shihu</creatorcontrib><creatorcontrib>Yuan, Zhiguo</creatorcontrib><creatorcontrib>Guo, Jianhua</creatorcontrib><title>Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The mainstream anaerobic ammonium oxidation (anammox) process provides strong support to the on-going paradigm shift from energy-negative to energy-neutral in wastewater treatment plants. However, the low temperature (e.g., below 15 °C) represents one of the major challenges for mainstream anammox in practice. In this study, a stable nitrogen removal rate (0.13 kg m–3 day–1), together with a high-level effluent quality (<5.0 mg N L–1), was achieved in a lab-scale upflow membrane biofilm reactor (MBfR) by coupling anammox with nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) microorganisms, at a temperature as low as 10 °C. With the temperature being progressively decreased from 25 to 10 °C, the total nitrogen removal efficiency was maintained in the range of 90–94% at a constant hydraulic retention time of 9 h. The impact of temperature on the biofilm system coupling anammox and n-DAMO reactions increased at a lower temperature range with higher Arrhenius coefficients. Additionally, 16S rRNA gene sequencing results showed that anammox bacteria, n-DAMO bacteria, and n-DAMO archaea jointly dominated the biofilm, and their respective abundances remained relatively stable when the temperature was decreased. The major reason for this temperature-tolerated performance is the overcapacity developed, which is indicated by biofilm thickness measurements and mathematical modeling. The stable performance obtained in this study shows promise for the n-DAMO application in domestic wastewater.</description><subject>Ammonia-oxidizing bacteria</subject><subject>Ammonium</subject><subject>Ammonium Compounds</subject><subject>Anaerobic microorganisms</subject><subject>Anaerobic processes</subject><subject>Anaerobiosis</subject><subject>Archaea</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Bioreactors</subject><subject>Coupling</subject><subject>Denitrification</subject><subject>Domestic wastewater</subject><subject>Gene sequencing</subject><subject>Hydraulic retention time</subject><subject>Low temperature</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Methane</subject><subject>Microorganisms</subject><subject>Nitrites</subject><subject>Nitrogen</subject><subject>Nitrogen removal</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Reactors</subject><subject>Retention time</subject><subject>RNA, Ribosomal, 16S</subject><subject>rRNA 16S</subject><subject>Temperature</subject><subject>Thickness measurement</subject><subject>Wastewater treatment</subject><subject>Wastewater treatment plants</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1rVDEUhoNY7Di6dicBN0K5M_m8H8taqxZaCzKCu0uSe0ZTbpJpkivt__AHm-tMuyi4esPJ855zOC9CbyhZUcLoWpm0gpRXnSayluQZWlDJSCVbSZ-jBSGUVx2vfxyjlyndEEIYJ-0LdMwZ4U3T1Qv0ZwNuB1HlKUK1CeP8hAFfKetTjqAc_mpzDD_B42_gwm81Yn2PT71yLtxh5Yd__zbDetbirT7CDvwAPs8UxKCtwVeQfykP-PrODirb4LH1WJWy03Guf7Bha0dXRiiTQ3yFjrZqTPD6oEv0_dP55uxLdXn9-eLs9LJSvGtz1TIh9MBaXhshamg7DUwYU4NqdDkGaNF02mjedELQmgrVDMAkEYOW26Hlgi_R-33fXQy3U7lj72wyMI5lpzClnnHJCaV1kSV69wS9CVP0ZbtCNW3XMSlZodZ7ysSQUoRtv4vWqXjfU9LPgfUlsH52HwIrjreHvpN2MDzyDwkV4GQPzM7Hmf9r9xcEbaKn</recordid><startdate>20200303</startdate><enddate>20200303</enddate><creator>Liu, Tao</creator><creator>Khai Lim, Zhuan</creator><creator>Chen, Hui</creator><creator>Hu, Shihu</creator><creator>Yuan, Zhiguo</creator><creator>Guo, Jianhua</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6145-8865</orcidid><orcidid>https://orcid.org/0000-0001-7673-747X</orcidid><orcidid>https://orcid.org/0000-0002-4732-9175</orcidid></search><sort><creationdate>20200303</creationdate><title>Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor</title><author>Liu, Tao ; Khai Lim, Zhuan ; Chen, Hui ; Hu, Shihu ; Yuan, Zhiguo ; Guo, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-8244bd2836c446e89be24cc6ea7b650eb479bcb379441614a7de2504db5fd8343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia-oxidizing bacteria</topic><topic>Ammonium</topic><topic>Ammonium Compounds</topic><topic>Anaerobic microorganisms</topic><topic>Anaerobic processes</topic><topic>Anaerobiosis</topic><topic>Archaea</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Bioreactors</topic><topic>Coupling</topic><topic>Denitrification</topic><topic>Domestic wastewater</topic><topic>Gene sequencing</topic><topic>Hydraulic retention time</topic><topic>Low temperature</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Methane</topic><topic>Microorganisms</topic><topic>Nitrites</topic><topic>Nitrogen</topic><topic>Nitrogen removal</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Reactors</topic><topic>Retention time</topic><topic>RNA, Ribosomal, 16S</topic><topic>rRNA 16S</topic><topic>Temperature</topic><topic>Thickness measurement</topic><topic>Wastewater treatment</topic><topic>Wastewater treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Khai Lim, Zhuan</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Hu, Shihu</creatorcontrib><creatorcontrib>Yuan, Zhiguo</creatorcontrib><creatorcontrib>Guo, Jianhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tao</au><au>Khai Lim, Zhuan</au><au>Chen, Hui</au><au>Hu, Shihu</au><au>Yuan, Zhiguo</au><au>Guo, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-03-03</date><risdate>2020</risdate><volume>54</volume><issue>5</issue><spage>3012</spage><epage>3021</epage><pages>3012-3021</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The mainstream anaerobic ammonium oxidation (anammox) process provides strong support to the on-going paradigm shift from energy-negative to energy-neutral in wastewater treatment plants. However, the low temperature (e.g., below 15 °C) represents one of the major challenges for mainstream anammox in practice. In this study, a stable nitrogen removal rate (0.13 kg m–3 day–1), together with a high-level effluent quality (<5.0 mg N L–1), was achieved in a lab-scale upflow membrane biofilm reactor (MBfR) by coupling anammox with nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) microorganisms, at a temperature as low as 10 °C. With the temperature being progressively decreased from 25 to 10 °C, the total nitrogen removal efficiency was maintained in the range of 90–94% at a constant hydraulic retention time of 9 h. The impact of temperature on the biofilm system coupling anammox and n-DAMO reactions increased at a lower temperature range with higher Arrhenius coefficients. Additionally, 16S rRNA gene sequencing results showed that anammox bacteria, n-DAMO bacteria, and n-DAMO archaea jointly dominated the biofilm, and their respective abundances remained relatively stable when the temperature was decreased. The major reason for this temperature-tolerated performance is the overcapacity developed, which is indicated by biofilm thickness measurements and mathematical modeling. The stable performance obtained in this study shows promise for the n-DAMO application in domestic wastewater.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32037796</pmid><doi>10.1021/acs.est.9b05650</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6145-8865</orcidid><orcidid>https://orcid.org/0000-0001-7673-747X</orcidid><orcidid>https://orcid.org/0000-0002-4732-9175</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-03, Vol.54 (5), p.3012-3021 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_2353011635 |
source | MEDLINE; ACS Publications |
subjects | Ammonia-oxidizing bacteria Ammonium Ammonium Compounds Anaerobic microorganisms Anaerobic processes Anaerobiosis Archaea Bacteria Biofilms Bioreactors Coupling Denitrification Domestic wastewater Gene sequencing Hydraulic retention time Low temperature Mathematical models Membranes Methane Microorganisms Nitrites Nitrogen Nitrogen removal Oxidation Oxidation-Reduction Reactors Retention time RNA, Ribosomal, 16S rRNA 16S Temperature Thickness measurement Wastewater treatment Wastewater treatment plants |
title | Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Tolerated%20Mainstream%20Nitrogen%20Removal%20by%20Anammox%20and%20Nitrite/Nitrate-Dependent%20Anaerobic%20Methane%20Oxidation%20in%20a%20Membrane%20Biofilm%20Reactor&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Liu,%20Tao&rft.date=2020-03-03&rft.volume=54&rft.issue=5&rft.spage=3012&rft.epage=3021&rft.pages=3012-3021&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b05650&rft_dat=%3Cproquest_cross%3E2353011635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378992552&rft_id=info:pmid/32037796&rfr_iscdi=true |