Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor

The mainstream anaerobic ammonium oxidation (anammox) process provides strong support to the on-going paradigm shift from energy-negative to energy-neutral in wastewater treatment plants. However, the low temperature (e.g., below 15 °C) represents one of the major challenges for mainstream anammox i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2020-03, Vol.54 (5), p.3012-3021
Hauptverfasser: Liu, Tao, Khai Lim, Zhuan, Chen, Hui, Hu, Shihu, Yuan, Zhiguo, Guo, Jianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3021
container_issue 5
container_start_page 3012
container_title Environmental science & technology
container_volume 54
creator Liu, Tao
Khai Lim, Zhuan
Chen, Hui
Hu, Shihu
Yuan, Zhiguo
Guo, Jianhua
description The mainstream anaerobic ammonium oxidation (anammox) process provides strong support to the on-going paradigm shift from energy-negative to energy-neutral in wastewater treatment plants. However, the low temperature (e.g., below 15 °C) represents one of the major challenges for mainstream anammox in practice. In this study, a stable nitrogen removal rate (0.13 kg m–3 day–1), together with a high-level effluent quality (
doi_str_mv 10.1021/acs.est.9b05650
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2353011635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2353011635</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-8244bd2836c446e89be24cc6ea7b650eb479bcb379441614a7de2504db5fd8343</originalsourceid><addsrcrecordid>eNp1kU1rVDEUhoNY7Di6dicBN0K5M_m8H8taqxZaCzKCu0uSe0ZTbpJpkivt__AHm-tMuyi4esPJ855zOC9CbyhZUcLoWpm0gpRXnSayluQZWlDJSCVbSZ-jBSGUVx2vfxyjlyndEEIYJ-0LdMwZ4U3T1Qv0ZwNuB1HlKUK1CeP8hAFfKetTjqAc_mpzDD_B42_gwm81Yn2PT71yLtxh5Yd__zbDetbirT7CDvwAPs8UxKCtwVeQfykP-PrODirb4LH1WJWy03Guf7Bha0dXRiiTQ3yFjrZqTPD6oEv0_dP55uxLdXn9-eLs9LJSvGtz1TIh9MBaXhshamg7DUwYU4NqdDkGaNF02mjedELQmgrVDMAkEYOW26Hlgi_R-33fXQy3U7lj72wyMI5lpzClnnHJCaV1kSV69wS9CVP0ZbtCNW3XMSlZodZ7ysSQUoRtv4vWqXjfU9LPgfUlsH52HwIrjreHvpN2MDzyDwkV4GQPzM7Hmf9r9xcEbaKn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2378992552</pqid></control><display><type>article</type><title>Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor</title><source>MEDLINE</source><source>ACS Publications</source><creator>Liu, Tao ; Khai Lim, Zhuan ; Chen, Hui ; Hu, Shihu ; Yuan, Zhiguo ; Guo, Jianhua</creator><creatorcontrib>Liu, Tao ; Khai Lim, Zhuan ; Chen, Hui ; Hu, Shihu ; Yuan, Zhiguo ; Guo, Jianhua</creatorcontrib><description>The mainstream anaerobic ammonium oxidation (anammox) process provides strong support to the on-going paradigm shift from energy-negative to energy-neutral in wastewater treatment plants. However, the low temperature (e.g., below 15 °C) represents one of the major challenges for mainstream anammox in practice. In this study, a stable nitrogen removal rate (0.13 kg m–3 day–1), together with a high-level effluent quality (&lt;5.0 mg N L–1), was achieved in a lab-scale upflow membrane biofilm reactor (MBfR) by coupling anammox with nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) microorganisms, at a temperature as low as 10 °C. With the temperature being progressively decreased from 25 to 10 °C, the total nitrogen removal efficiency was maintained in the range of 90–94% at a constant hydraulic retention time of 9 h. The impact of temperature on the biofilm system coupling anammox and n-DAMO reactions increased at a lower temperature range with higher Arrhenius coefficients. Additionally, 16S rRNA gene sequencing results showed that anammox bacteria, n-DAMO bacteria, and n-DAMO archaea jointly dominated the biofilm, and their respective abundances remained relatively stable when the temperature was decreased. The major reason for this temperature-tolerated performance is the overcapacity developed, which is indicated by biofilm thickness measurements and mathematical modeling. The stable performance obtained in this study shows promise for the n-DAMO application in domestic wastewater.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.9b05650</identifier><identifier>PMID: 32037796</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Ammonia-oxidizing bacteria ; Ammonium ; Ammonium Compounds ; Anaerobic microorganisms ; Anaerobic processes ; Anaerobiosis ; Archaea ; Bacteria ; Biofilms ; Bioreactors ; Coupling ; Denitrification ; Domestic wastewater ; Gene sequencing ; Hydraulic retention time ; Low temperature ; Mathematical models ; Membranes ; Methane ; Microorganisms ; Nitrites ; Nitrogen ; Nitrogen removal ; Oxidation ; Oxidation-Reduction ; Reactors ; Retention time ; RNA, Ribosomal, 16S ; rRNA 16S ; Temperature ; Thickness measurement ; Wastewater treatment ; Wastewater treatment plants</subject><ispartof>Environmental science &amp; technology, 2020-03, Vol.54 (5), p.3012-3021</ispartof><rights>Copyright American Chemical Society Mar 3, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a398t-8244bd2836c446e89be24cc6ea7b650eb479bcb379441614a7de2504db5fd8343</citedby><cites>FETCH-LOGICAL-a398t-8244bd2836c446e89be24cc6ea7b650eb479bcb379441614a7de2504db5fd8343</cites><orcidid>0000-0001-6145-8865 ; 0000-0001-7673-747X ; 0000-0002-4732-9175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.9b05650$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.9b05650$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32037796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Khai Lim, Zhuan</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Hu, Shihu</creatorcontrib><creatorcontrib>Yuan, Zhiguo</creatorcontrib><creatorcontrib>Guo, Jianhua</creatorcontrib><title>Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The mainstream anaerobic ammonium oxidation (anammox) process provides strong support to the on-going paradigm shift from energy-negative to energy-neutral in wastewater treatment plants. However, the low temperature (e.g., below 15 °C) represents one of the major challenges for mainstream anammox in practice. In this study, a stable nitrogen removal rate (0.13 kg m–3 day–1), together with a high-level effluent quality (&lt;5.0 mg N L–1), was achieved in a lab-scale upflow membrane biofilm reactor (MBfR) by coupling anammox with nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) microorganisms, at a temperature as low as 10 °C. With the temperature being progressively decreased from 25 to 10 °C, the total nitrogen removal efficiency was maintained in the range of 90–94% at a constant hydraulic retention time of 9 h. The impact of temperature on the biofilm system coupling anammox and n-DAMO reactions increased at a lower temperature range with higher Arrhenius coefficients. Additionally, 16S rRNA gene sequencing results showed that anammox bacteria, n-DAMO bacteria, and n-DAMO archaea jointly dominated the biofilm, and their respective abundances remained relatively stable when the temperature was decreased. The major reason for this temperature-tolerated performance is the overcapacity developed, which is indicated by biofilm thickness measurements and mathematical modeling. The stable performance obtained in this study shows promise for the n-DAMO application in domestic wastewater.</description><subject>Ammonia-oxidizing bacteria</subject><subject>Ammonium</subject><subject>Ammonium Compounds</subject><subject>Anaerobic microorganisms</subject><subject>Anaerobic processes</subject><subject>Anaerobiosis</subject><subject>Archaea</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Bioreactors</subject><subject>Coupling</subject><subject>Denitrification</subject><subject>Domestic wastewater</subject><subject>Gene sequencing</subject><subject>Hydraulic retention time</subject><subject>Low temperature</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Methane</subject><subject>Microorganisms</subject><subject>Nitrites</subject><subject>Nitrogen</subject><subject>Nitrogen removal</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Reactors</subject><subject>Retention time</subject><subject>RNA, Ribosomal, 16S</subject><subject>rRNA 16S</subject><subject>Temperature</subject><subject>Thickness measurement</subject><subject>Wastewater treatment</subject><subject>Wastewater treatment plants</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1rVDEUhoNY7Di6dicBN0K5M_m8H8taqxZaCzKCu0uSe0ZTbpJpkivt__AHm-tMuyi4esPJ855zOC9CbyhZUcLoWpm0gpRXnSayluQZWlDJSCVbSZ-jBSGUVx2vfxyjlyndEEIYJ-0LdMwZ4U3T1Qv0ZwNuB1HlKUK1CeP8hAFfKetTjqAc_mpzDD_B42_gwm81Yn2PT71yLtxh5Yd__zbDetbirT7CDvwAPs8UxKCtwVeQfykP-PrODirb4LH1WJWy03Guf7Bha0dXRiiTQ3yFjrZqTPD6oEv0_dP55uxLdXn9-eLs9LJSvGtz1TIh9MBaXhshamg7DUwYU4NqdDkGaNF02mjedELQmgrVDMAkEYOW26Hlgi_R-33fXQy3U7lj72wyMI5lpzClnnHJCaV1kSV69wS9CVP0ZbtCNW3XMSlZodZ7ysSQUoRtv4vWqXjfU9LPgfUlsH52HwIrjreHvpN2MDzyDwkV4GQPzM7Hmf9r9xcEbaKn</recordid><startdate>20200303</startdate><enddate>20200303</enddate><creator>Liu, Tao</creator><creator>Khai Lim, Zhuan</creator><creator>Chen, Hui</creator><creator>Hu, Shihu</creator><creator>Yuan, Zhiguo</creator><creator>Guo, Jianhua</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6145-8865</orcidid><orcidid>https://orcid.org/0000-0001-7673-747X</orcidid><orcidid>https://orcid.org/0000-0002-4732-9175</orcidid></search><sort><creationdate>20200303</creationdate><title>Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor</title><author>Liu, Tao ; Khai Lim, Zhuan ; Chen, Hui ; Hu, Shihu ; Yuan, Zhiguo ; Guo, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-8244bd2836c446e89be24cc6ea7b650eb479bcb379441614a7de2504db5fd8343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ammonia-oxidizing bacteria</topic><topic>Ammonium</topic><topic>Ammonium Compounds</topic><topic>Anaerobic microorganisms</topic><topic>Anaerobic processes</topic><topic>Anaerobiosis</topic><topic>Archaea</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Bioreactors</topic><topic>Coupling</topic><topic>Denitrification</topic><topic>Domestic wastewater</topic><topic>Gene sequencing</topic><topic>Hydraulic retention time</topic><topic>Low temperature</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Methane</topic><topic>Microorganisms</topic><topic>Nitrites</topic><topic>Nitrogen</topic><topic>Nitrogen removal</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Reactors</topic><topic>Retention time</topic><topic>RNA, Ribosomal, 16S</topic><topic>rRNA 16S</topic><topic>Temperature</topic><topic>Thickness measurement</topic><topic>Wastewater treatment</topic><topic>Wastewater treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Khai Lim, Zhuan</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Hu, Shihu</creatorcontrib><creatorcontrib>Yuan, Zhiguo</creatorcontrib><creatorcontrib>Guo, Jianhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tao</au><au>Khai Lim, Zhuan</au><au>Chen, Hui</au><au>Hu, Shihu</au><au>Yuan, Zhiguo</au><au>Guo, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-03-03</date><risdate>2020</risdate><volume>54</volume><issue>5</issue><spage>3012</spage><epage>3021</epage><pages>3012-3021</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The mainstream anaerobic ammonium oxidation (anammox) process provides strong support to the on-going paradigm shift from energy-negative to energy-neutral in wastewater treatment plants. However, the low temperature (e.g., below 15 °C) represents one of the major challenges for mainstream anammox in practice. In this study, a stable nitrogen removal rate (0.13 kg m–3 day–1), together with a high-level effluent quality (&lt;5.0 mg N L–1), was achieved in a lab-scale upflow membrane biofilm reactor (MBfR) by coupling anammox with nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) microorganisms, at a temperature as low as 10 °C. With the temperature being progressively decreased from 25 to 10 °C, the total nitrogen removal efficiency was maintained in the range of 90–94% at a constant hydraulic retention time of 9 h. The impact of temperature on the biofilm system coupling anammox and n-DAMO reactions increased at a lower temperature range with higher Arrhenius coefficients. Additionally, 16S rRNA gene sequencing results showed that anammox bacteria, n-DAMO bacteria, and n-DAMO archaea jointly dominated the biofilm, and their respective abundances remained relatively stable when the temperature was decreased. The major reason for this temperature-tolerated performance is the overcapacity developed, which is indicated by biofilm thickness measurements and mathematical modeling. The stable performance obtained in this study shows promise for the n-DAMO application in domestic wastewater.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32037796</pmid><doi>10.1021/acs.est.9b05650</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6145-8865</orcidid><orcidid>https://orcid.org/0000-0001-7673-747X</orcidid><orcidid>https://orcid.org/0000-0002-4732-9175</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2020-03, Vol.54 (5), p.3012-3021
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2353011635
source MEDLINE; ACS Publications
subjects Ammonia-oxidizing bacteria
Ammonium
Ammonium Compounds
Anaerobic microorganisms
Anaerobic processes
Anaerobiosis
Archaea
Bacteria
Biofilms
Bioreactors
Coupling
Denitrification
Domestic wastewater
Gene sequencing
Hydraulic retention time
Low temperature
Mathematical models
Membranes
Methane
Microorganisms
Nitrites
Nitrogen
Nitrogen removal
Oxidation
Oxidation-Reduction
Reactors
Retention time
RNA, Ribosomal, 16S
rRNA 16S
Temperature
Thickness measurement
Wastewater treatment
Wastewater treatment plants
title Temperature-Tolerated Mainstream Nitrogen Removal by Anammox and Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation in a Membrane Biofilm Reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Tolerated%20Mainstream%20Nitrogen%20Removal%20by%20Anammox%20and%20Nitrite/Nitrate-Dependent%20Anaerobic%20Methane%20Oxidation%20in%20a%20Membrane%20Biofilm%20Reactor&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Liu,%20Tao&rft.date=2020-03-03&rft.volume=54&rft.issue=5&rft.spage=3012&rft.epage=3021&rft.pages=3012-3021&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.9b05650&rft_dat=%3Cproquest_cross%3E2353011635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2378992552&rft_id=info:pmid/32037796&rfr_iscdi=true