Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse
Fast isochoric laser heating is a scheme to heat matter with a relativistic intensity (>10^{18} W/cm^{2}) laser pulse for producing an ultrahigh-energy-density (UHED) state. We have demonstrated an efficient fast isochoric heating of a compressed dense plasma core with a multipicosecond kilojoul...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-01, Vol.124 (3), p.035001-035001, Article 035001 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 035001 |
---|---|
container_issue | 3 |
container_start_page | 035001 |
container_title | Physical review letters |
container_volume | 124 |
creator | Matsuo, Kazuki Higashi, Naoki Iwata, Natsumi Sakata, Shohei Lee, Seungho Johzaki, Tomoyuki Sawada, Hiroshi Iwasa, Yuki Law, King Fai Farley Morita, Hiroki Ochiai, Yugo Kojima, Sadaoki Abe, Yuki Hata, Masayasu Sano, Takayoshi Nagatomo, Hideo Sunahara, Atsushi Morace, Alessio Yogo, Akifumi Nakai, Mitsuo Sakagami, Hitoshi Ozaki, Tetsuo Yamanoi, Kohei Norimatsu, Takayoshi Nakata, Yoshiki Tokita, Shigeki Kawanaka, Junji Shiraga, Hiroyuki Mima, Kunioki Azechi, Hiroshi Kodama, Ryosuke Arikawa, Yasunobu Sentoku, Yasuhiko Fujioka, Shinsuke |
description | Fast isochoric laser heating is a scheme to heat matter with a relativistic intensity (>10^{18} W/cm^{2}) laser pulse for producing an ultrahigh-energy-density (UHED) state. We have demonstrated an efficient fast isochoric heating of a compressed dense plasma core with a multipicosecond kilojoule-class petawatt laser and an assistance of externally applied kilotesla magnetic fields for guiding fast electrons to the dense plasma. A UHED state of 2.2 PPa is achieved experimentally with 4.6 kJ of total laser energy that is one order of magnitude lower than the energy used in the conventional implosion scheme. A two-dimensional particle-in-cell simulation confirmed that diffusive heating from a laser-plasma interaction zone to the dense plasma plays an essential role to the efficient creation of the UHED state. |
doi_str_mv | 10.1103/PhysRevLett.124.035001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2352648164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348876555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-92e0b055b999bf31e931d5a858e55c496c51e702ad08fbd289202c3d03dbd3103</originalsourceid><addsrcrecordid>eNpdkUFP3DAQha2qVVlo_wKyxKWXLGM7TuwjogVWWtRVBWfLcWbZoGyy9ThU--9rtIAQp3eY7z2N3mPsVMBcCFDnq82e_uDTElOaC1nOQWkA8YnNBNS2qIUoP7MZgBKFBaiP2DHRI2RCVuYrO1IyX0wlZ8ytMPmdp-B7vopINEXkP2P3hANv9vzKU-ILGsNmjF3gN-hTNzzwf13acM9vpz51uy6MhGEcWr4YEg6EfOkJI19NPeE39mXts35_0RN2f_Xr7vKmWP6-XlxeLIugoE6FlQgNaN1Ya5u1EmiVaLU32qDWobRV0AJrkL4Fs25aaawEGVQLqm1alQs5YT8Oubs4_p2Qktt2FLDv_YDjRE4qLavSiKrM6NkH9HGc4pC_y1RpTF1prTNVHagQR6KIa7eL3dbHvRPgnidw7yZweQJ3mCAbT1_ip2aL7ZvttXP1H0AfhFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348876555</pqid></control><display><type>article</type><title>Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Matsuo, Kazuki ; Higashi, Naoki ; Iwata, Natsumi ; Sakata, Shohei ; Lee, Seungho ; Johzaki, Tomoyuki ; Sawada, Hiroshi ; Iwasa, Yuki ; Law, King Fai Farley ; Morita, Hiroki ; Ochiai, Yugo ; Kojima, Sadaoki ; Abe, Yuki ; Hata, Masayasu ; Sano, Takayoshi ; Nagatomo, Hideo ; Sunahara, Atsushi ; Morace, Alessio ; Yogo, Akifumi ; Nakai, Mitsuo ; Sakagami, Hitoshi ; Ozaki, Tetsuo ; Yamanoi, Kohei ; Norimatsu, Takayoshi ; Nakata, Yoshiki ; Tokita, Shigeki ; Kawanaka, Junji ; Shiraga, Hiroyuki ; Mima, Kunioki ; Azechi, Hiroshi ; Kodama, Ryosuke ; Arikawa, Yasunobu ; Sentoku, Yasuhiko ; Fujioka, Shinsuke</creator><creatorcontrib>Matsuo, Kazuki ; Higashi, Naoki ; Iwata, Natsumi ; Sakata, Shohei ; Lee, Seungho ; Johzaki, Tomoyuki ; Sawada, Hiroshi ; Iwasa, Yuki ; Law, King Fai Farley ; Morita, Hiroki ; Ochiai, Yugo ; Kojima, Sadaoki ; Abe, Yuki ; Hata, Masayasu ; Sano, Takayoshi ; Nagatomo, Hideo ; Sunahara, Atsushi ; Morace, Alessio ; Yogo, Akifumi ; Nakai, Mitsuo ; Sakagami, Hitoshi ; Ozaki, Tetsuo ; Yamanoi, Kohei ; Norimatsu, Takayoshi ; Nakata, Yoshiki ; Tokita, Shigeki ; Kawanaka, Junji ; Shiraga, Hiroyuki ; Mima, Kunioki ; Azechi, Hiroshi ; Kodama, Ryosuke ; Arikawa, Yasunobu ; Sentoku, Yasuhiko ; Fujioka, Shinsuke</creatorcontrib><description>Fast isochoric laser heating is a scheme to heat matter with a relativistic intensity (>10^{18} W/cm^{2}) laser pulse for producing an ultrahigh-energy-density (UHED) state. We have demonstrated an efficient fast isochoric heating of a compressed dense plasma core with a multipicosecond kilojoule-class petawatt laser and an assistance of externally applied kilotesla magnetic fields for guiding fast electrons to the dense plasma. A UHED state of 2.2 PPa is achieved experimentally with 4.6 kJ of total laser energy that is one order of magnitude lower than the energy used in the conventional implosion scheme. A two-dimensional particle-in-cell simulation confirmed that diffusive heating from a laser-plasma interaction zone to the dense plasma plays an essential role to the efficient creation of the UHED state.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.035001</identifier><identifier>PMID: 32031862</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Dense plasmas ; Laser beam heating ; Laser plasma interactions ; Lasers ; Particle in cell technique ; Plasma ; Plasma interactions</subject><ispartof>Physical review letters, 2020-01, Vol.124 (3), p.035001-035001, Article 035001</ispartof><rights>Copyright American Physical Society Jan 24, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-92e0b055b999bf31e931d5a858e55c496c51e702ad08fbd289202c3d03dbd3103</citedby><cites>FETCH-LOGICAL-c307t-92e0b055b999bf31e931d5a858e55c496c51e702ad08fbd289202c3d03dbd3103</cites><orcidid>0000-0002-9838-7092 ; 0000-0002-5738-4661 ; 0000-0003-3730-3630 ; 0000-0001-7543-5226 ; 0000-0001-5655-7981 ; 0000-0002-7972-9894 ; 0000-0002-0680-999X ; 0000-0002-7157-6993 ; 0000-0001-8406-1772 ; 0000-0002-2669-5504 ; 0000-0001-6340-7420 ; 0000-0002-5484-8870 ; 0000-0003-2354-1961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32031862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsuo, Kazuki</creatorcontrib><creatorcontrib>Higashi, Naoki</creatorcontrib><creatorcontrib>Iwata, Natsumi</creatorcontrib><creatorcontrib>Sakata, Shohei</creatorcontrib><creatorcontrib>Lee, Seungho</creatorcontrib><creatorcontrib>Johzaki, Tomoyuki</creatorcontrib><creatorcontrib>Sawada, Hiroshi</creatorcontrib><creatorcontrib>Iwasa, Yuki</creatorcontrib><creatorcontrib>Law, King Fai Farley</creatorcontrib><creatorcontrib>Morita, Hiroki</creatorcontrib><creatorcontrib>Ochiai, Yugo</creatorcontrib><creatorcontrib>Kojima, Sadaoki</creatorcontrib><creatorcontrib>Abe, Yuki</creatorcontrib><creatorcontrib>Hata, Masayasu</creatorcontrib><creatorcontrib>Sano, Takayoshi</creatorcontrib><creatorcontrib>Nagatomo, Hideo</creatorcontrib><creatorcontrib>Sunahara, Atsushi</creatorcontrib><creatorcontrib>Morace, Alessio</creatorcontrib><creatorcontrib>Yogo, Akifumi</creatorcontrib><creatorcontrib>Nakai, Mitsuo</creatorcontrib><creatorcontrib>Sakagami, Hitoshi</creatorcontrib><creatorcontrib>Ozaki, Tetsuo</creatorcontrib><creatorcontrib>Yamanoi, Kohei</creatorcontrib><creatorcontrib>Norimatsu, Takayoshi</creatorcontrib><creatorcontrib>Nakata, Yoshiki</creatorcontrib><creatorcontrib>Tokita, Shigeki</creatorcontrib><creatorcontrib>Kawanaka, Junji</creatorcontrib><creatorcontrib>Shiraga, Hiroyuki</creatorcontrib><creatorcontrib>Mima, Kunioki</creatorcontrib><creatorcontrib>Azechi, Hiroshi</creatorcontrib><creatorcontrib>Kodama, Ryosuke</creatorcontrib><creatorcontrib>Arikawa, Yasunobu</creatorcontrib><creatorcontrib>Sentoku, Yasuhiko</creatorcontrib><creatorcontrib>Fujioka, Shinsuke</creatorcontrib><title>Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Fast isochoric laser heating is a scheme to heat matter with a relativistic intensity (>10^{18} W/cm^{2}) laser pulse for producing an ultrahigh-energy-density (UHED) state. We have demonstrated an efficient fast isochoric heating of a compressed dense plasma core with a multipicosecond kilojoule-class petawatt laser and an assistance of externally applied kilotesla magnetic fields for guiding fast electrons to the dense plasma. A UHED state of 2.2 PPa is achieved experimentally with 4.6 kJ of total laser energy that is one order of magnitude lower than the energy used in the conventional implosion scheme. A two-dimensional particle-in-cell simulation confirmed that diffusive heating from a laser-plasma interaction zone to the dense plasma plays an essential role to the efficient creation of the UHED state.</description><subject>Dense plasmas</subject><subject>Laser beam heating</subject><subject>Laser plasma interactions</subject><subject>Lasers</subject><subject>Particle in cell technique</subject><subject>Plasma</subject><subject>Plasma interactions</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkUFP3DAQha2qVVlo_wKyxKWXLGM7TuwjogVWWtRVBWfLcWbZoGyy9ThU--9rtIAQp3eY7z2N3mPsVMBcCFDnq82e_uDTElOaC1nOQWkA8YnNBNS2qIUoP7MZgBKFBaiP2DHRI2RCVuYrO1IyX0wlZ8ytMPmdp-B7vopINEXkP2P3hANv9vzKU-ILGsNmjF3gN-hTNzzwf13acM9vpz51uy6MhGEcWr4YEg6EfOkJI19NPeE39mXts35_0RN2f_Xr7vKmWP6-XlxeLIugoE6FlQgNaN1Ya5u1EmiVaLU32qDWobRV0AJrkL4Fs25aaawEGVQLqm1alQs5YT8Oubs4_p2Qktt2FLDv_YDjRE4qLavSiKrM6NkH9HGc4pC_y1RpTF1prTNVHagQR6KIa7eL3dbHvRPgnidw7yZweQJ3mCAbT1_ip2aL7ZvttXP1H0AfhFc</recordid><startdate>20200124</startdate><enddate>20200124</enddate><creator>Matsuo, Kazuki</creator><creator>Higashi, Naoki</creator><creator>Iwata, Natsumi</creator><creator>Sakata, Shohei</creator><creator>Lee, Seungho</creator><creator>Johzaki, Tomoyuki</creator><creator>Sawada, Hiroshi</creator><creator>Iwasa, Yuki</creator><creator>Law, King Fai Farley</creator><creator>Morita, Hiroki</creator><creator>Ochiai, Yugo</creator><creator>Kojima, Sadaoki</creator><creator>Abe, Yuki</creator><creator>Hata, Masayasu</creator><creator>Sano, Takayoshi</creator><creator>Nagatomo, Hideo</creator><creator>Sunahara, Atsushi</creator><creator>Morace, Alessio</creator><creator>Yogo, Akifumi</creator><creator>Nakai, Mitsuo</creator><creator>Sakagami, Hitoshi</creator><creator>Ozaki, Tetsuo</creator><creator>Yamanoi, Kohei</creator><creator>Norimatsu, Takayoshi</creator><creator>Nakata, Yoshiki</creator><creator>Tokita, Shigeki</creator><creator>Kawanaka, Junji</creator><creator>Shiraga, Hiroyuki</creator><creator>Mima, Kunioki</creator><creator>Azechi, Hiroshi</creator><creator>Kodama, Ryosuke</creator><creator>Arikawa, Yasunobu</creator><creator>Sentoku, Yasuhiko</creator><creator>Fujioka, Shinsuke</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9838-7092</orcidid><orcidid>https://orcid.org/0000-0002-5738-4661</orcidid><orcidid>https://orcid.org/0000-0003-3730-3630</orcidid><orcidid>https://orcid.org/0000-0001-7543-5226</orcidid><orcidid>https://orcid.org/0000-0001-5655-7981</orcidid><orcidid>https://orcid.org/0000-0002-7972-9894</orcidid><orcidid>https://orcid.org/0000-0002-0680-999X</orcidid><orcidid>https://orcid.org/0000-0002-7157-6993</orcidid><orcidid>https://orcid.org/0000-0001-8406-1772</orcidid><orcidid>https://orcid.org/0000-0002-2669-5504</orcidid><orcidid>https://orcid.org/0000-0001-6340-7420</orcidid><orcidid>https://orcid.org/0000-0002-5484-8870</orcidid><orcidid>https://orcid.org/0000-0003-2354-1961</orcidid></search><sort><creationdate>20200124</creationdate><title>Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse</title><author>Matsuo, Kazuki ; Higashi, Naoki ; Iwata, Natsumi ; Sakata, Shohei ; Lee, Seungho ; Johzaki, Tomoyuki ; Sawada, Hiroshi ; Iwasa, Yuki ; Law, King Fai Farley ; Morita, Hiroki ; Ochiai, Yugo ; Kojima, Sadaoki ; Abe, Yuki ; Hata, Masayasu ; Sano, Takayoshi ; Nagatomo, Hideo ; Sunahara, Atsushi ; Morace, Alessio ; Yogo, Akifumi ; Nakai, Mitsuo ; Sakagami, Hitoshi ; Ozaki, Tetsuo ; Yamanoi, Kohei ; Norimatsu, Takayoshi ; Nakata, Yoshiki ; Tokita, Shigeki ; Kawanaka, Junji ; Shiraga, Hiroyuki ; Mima, Kunioki ; Azechi, Hiroshi ; Kodama, Ryosuke ; Arikawa, Yasunobu ; Sentoku, Yasuhiko ; Fujioka, Shinsuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-92e0b055b999bf31e931d5a858e55c496c51e702ad08fbd289202c3d03dbd3103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dense plasmas</topic><topic>Laser beam heating</topic><topic>Laser plasma interactions</topic><topic>Lasers</topic><topic>Particle in cell technique</topic><topic>Plasma</topic><topic>Plasma interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuo, Kazuki</creatorcontrib><creatorcontrib>Higashi, Naoki</creatorcontrib><creatorcontrib>Iwata, Natsumi</creatorcontrib><creatorcontrib>Sakata, Shohei</creatorcontrib><creatorcontrib>Lee, Seungho</creatorcontrib><creatorcontrib>Johzaki, Tomoyuki</creatorcontrib><creatorcontrib>Sawada, Hiroshi</creatorcontrib><creatorcontrib>Iwasa, Yuki</creatorcontrib><creatorcontrib>Law, King Fai Farley</creatorcontrib><creatorcontrib>Morita, Hiroki</creatorcontrib><creatorcontrib>Ochiai, Yugo</creatorcontrib><creatorcontrib>Kojima, Sadaoki</creatorcontrib><creatorcontrib>Abe, Yuki</creatorcontrib><creatorcontrib>Hata, Masayasu</creatorcontrib><creatorcontrib>Sano, Takayoshi</creatorcontrib><creatorcontrib>Nagatomo, Hideo</creatorcontrib><creatorcontrib>Sunahara, Atsushi</creatorcontrib><creatorcontrib>Morace, Alessio</creatorcontrib><creatorcontrib>Yogo, Akifumi</creatorcontrib><creatorcontrib>Nakai, Mitsuo</creatorcontrib><creatorcontrib>Sakagami, Hitoshi</creatorcontrib><creatorcontrib>Ozaki, Tetsuo</creatorcontrib><creatorcontrib>Yamanoi, Kohei</creatorcontrib><creatorcontrib>Norimatsu, Takayoshi</creatorcontrib><creatorcontrib>Nakata, Yoshiki</creatorcontrib><creatorcontrib>Tokita, Shigeki</creatorcontrib><creatorcontrib>Kawanaka, Junji</creatorcontrib><creatorcontrib>Shiraga, Hiroyuki</creatorcontrib><creatorcontrib>Mima, Kunioki</creatorcontrib><creatorcontrib>Azechi, Hiroshi</creatorcontrib><creatorcontrib>Kodama, Ryosuke</creatorcontrib><creatorcontrib>Arikawa, Yasunobu</creatorcontrib><creatorcontrib>Sentoku, Yasuhiko</creatorcontrib><creatorcontrib>Fujioka, Shinsuke</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsuo, Kazuki</au><au>Higashi, Naoki</au><au>Iwata, Natsumi</au><au>Sakata, Shohei</au><au>Lee, Seungho</au><au>Johzaki, Tomoyuki</au><au>Sawada, Hiroshi</au><au>Iwasa, Yuki</au><au>Law, King Fai Farley</au><au>Morita, Hiroki</au><au>Ochiai, Yugo</au><au>Kojima, Sadaoki</au><au>Abe, Yuki</au><au>Hata, Masayasu</au><au>Sano, Takayoshi</au><au>Nagatomo, Hideo</au><au>Sunahara, Atsushi</au><au>Morace, Alessio</au><au>Yogo, Akifumi</au><au>Nakai, Mitsuo</au><au>Sakagami, Hitoshi</au><au>Ozaki, Tetsuo</au><au>Yamanoi, Kohei</au><au>Norimatsu, Takayoshi</au><au>Nakata, Yoshiki</au><au>Tokita, Shigeki</au><au>Kawanaka, Junji</au><au>Shiraga, Hiroyuki</au><au>Mima, Kunioki</au><au>Azechi, Hiroshi</au><au>Kodama, Ryosuke</au><au>Arikawa, Yasunobu</au><au>Sentoku, Yasuhiko</au><au>Fujioka, Shinsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-01-24</date><risdate>2020</risdate><volume>124</volume><issue>3</issue><spage>035001</spage><epage>035001</epage><pages>035001-035001</pages><artnum>035001</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Fast isochoric laser heating is a scheme to heat matter with a relativistic intensity (>10^{18} W/cm^{2}) laser pulse for producing an ultrahigh-energy-density (UHED) state. We have demonstrated an efficient fast isochoric heating of a compressed dense plasma core with a multipicosecond kilojoule-class petawatt laser and an assistance of externally applied kilotesla magnetic fields for guiding fast electrons to the dense plasma. A UHED state of 2.2 PPa is achieved experimentally with 4.6 kJ of total laser energy that is one order of magnitude lower than the energy used in the conventional implosion scheme. A two-dimensional particle-in-cell simulation confirmed that diffusive heating from a laser-plasma interaction zone to the dense plasma plays an essential role to the efficient creation of the UHED state.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>32031862</pmid><doi>10.1103/PhysRevLett.124.035001</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9838-7092</orcidid><orcidid>https://orcid.org/0000-0002-5738-4661</orcidid><orcidid>https://orcid.org/0000-0003-3730-3630</orcidid><orcidid>https://orcid.org/0000-0001-7543-5226</orcidid><orcidid>https://orcid.org/0000-0001-5655-7981</orcidid><orcidid>https://orcid.org/0000-0002-7972-9894</orcidid><orcidid>https://orcid.org/0000-0002-0680-999X</orcidid><orcidid>https://orcid.org/0000-0002-7157-6993</orcidid><orcidid>https://orcid.org/0000-0001-8406-1772</orcidid><orcidid>https://orcid.org/0000-0002-2669-5504</orcidid><orcidid>https://orcid.org/0000-0001-6340-7420</orcidid><orcidid>https://orcid.org/0000-0002-5484-8870</orcidid><orcidid>https://orcid.org/0000-0003-2354-1961</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-01, Vol.124 (3), p.035001-035001, Article 035001 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2352648164 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Dense plasmas Laser beam heating Laser plasma interactions Lasers Particle in cell technique Plasma Plasma interactions |
title | Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Petapascal%20Pressure%20Driven%20by%20Fast%20Isochoric%20Heating%20with%20a%20Multipicosecond%20Intense%20Laser%20Pulse&rft.jtitle=Physical%20review%20letters&rft.au=Matsuo,%20Kazuki&rft.date=2020-01-24&rft.volume=124&rft.issue=3&rft.spage=035001&rft.epage=035001&rft.pages=035001-035001&rft.artnum=035001&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.035001&rft_dat=%3Cproquest_cross%3E2348876555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348876555&rft_id=info:pmid/32031862&rfr_iscdi=true |