Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery

A rechargeable aqueous zinc-ion battery (ZIB) is one of the attractive candidates for large-scale energy storage. Its further application relies on the exploitation of a high-capacity cathode and the understanding of an intrinsic energy storage mechanism. Herein, we report a novel layered K2V3O8 cat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-03, Vol.12 (9), p.10420-10427
Hauptverfasser: Li, Zhi, Wu, Buke, Yan, Mengyu, He, Liang, Xu, Lin, Zhang, Guobin, Xiong, Tengfei, Luo, Wen, Mai, Liqiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10427
container_issue 9
container_start_page 10420
container_title ACS applied materials & interfaces
container_volume 12
creator Li, Zhi
Wu, Buke
Yan, Mengyu
He, Liang
Xu, Lin
Zhang, Guobin
Xiong, Tengfei
Luo, Wen
Mai, Liqiang
description A rechargeable aqueous zinc-ion battery (ZIB) is one of the attractive candidates for large-scale energy storage. Its further application relies on the exploitation of a high-capacity cathode and the understanding of an intrinsic energy storage mechanism. Herein, we report a novel layered K2V3O8 cathode material for the ZIB, adopting a strategy of charging first to extract part of K-ions from vanadate in initial few cycles, which creates more electrochemically active sites and lowers charge-transfer resistance of the ZIB system. As a result, a considerable specific capacity of 302.8 mA h g–1 at 0.1 A g–1, as well as a remarkable cycling stability (92.3% capacity retention at 4 A g–1 for 2000 cycles) and good rate capability, are achieved. Besides, the energy storage mechanism was studied by in situ X-ray diffraction, in situ Raman spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma mass spectroscopy. An irreversible K-ion deintercalation in the first charge process is proved. It is believed that this novel cathode material for the rechargeable aqueous ZIB and the optimizing strategy will shed light on developing next-generation large-scale energy storage devices.
doi_str_mv 10.1021/acsami.9b21579
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2352634372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352634372</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-199358d2d6d4dc04e540072b082b5f0a13cc3e3b6e73d274f5ab972c72f73cdd3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwMiKPCCnF8SNORogorVS1CywslmM7ras8iu0glV9PUEo3pnOH7xzpfgDcxmgaIxw_SuVlbadZgWPGszMwjjNKoxQzfH66KR2BK-93CCUEI3YJRn3glCd0DFar9stUMN9Kt7HNJlrvg63tt9Ewl2HbagPL1kEJZ9IHKBsN53azjXK5l8qGA_ywjYoWbQOfZQjGHa7BRSkrb26OOQHvs5e3fB4t16-L_GkZSUJQiOIsIyzVWCeaaoWoYRQhjguU4oKVSMZEKWJIkRhONOa0ZLLIOFYcl5worckE3A-7e9d-dsYHUVuvTFXJxrSdF5gwnBBKOO7R6YAq13rvTCn2ztbSHUSMxK9DMTgUR4d94e643RW10Sf8T1oPPAxAXxS7tnNN_-p_az_XE3qb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352634372</pqid></control><display><type>article</type><title>Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery</title><source>American Chemical Society Journals</source><creator>Li, Zhi ; Wu, Buke ; Yan, Mengyu ; He, Liang ; Xu, Lin ; Zhang, Guobin ; Xiong, Tengfei ; Luo, Wen ; Mai, Liqiang</creator><creatorcontrib>Li, Zhi ; Wu, Buke ; Yan, Mengyu ; He, Liang ; Xu, Lin ; Zhang, Guobin ; Xiong, Tengfei ; Luo, Wen ; Mai, Liqiang</creatorcontrib><description>A rechargeable aqueous zinc-ion battery (ZIB) is one of the attractive candidates for large-scale energy storage. Its further application relies on the exploitation of a high-capacity cathode and the understanding of an intrinsic energy storage mechanism. Herein, we report a novel layered K2V3O8 cathode material for the ZIB, adopting a strategy of charging first to extract part of K-ions from vanadate in initial few cycles, which creates more electrochemically active sites and lowers charge-transfer resistance of the ZIB system. As a result, a considerable specific capacity of 302.8 mA h g–1 at 0.1 A g–1, as well as a remarkable cycling stability (92.3% capacity retention at 4 A g–1 for 2000 cycles) and good rate capability, are achieved. Besides, the energy storage mechanism was studied by in situ X-ray diffraction, in situ Raman spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma mass spectroscopy. An irreversible K-ion deintercalation in the first charge process is proved. It is believed that this novel cathode material for the rechargeable aqueous ZIB and the optimizing strategy will shed light on developing next-generation large-scale energy storage devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b21579</identifier><identifier>PMID: 32028764</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-03, Vol.12 (9), p.10420-10427</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-199358d2d6d4dc04e540072b082b5f0a13cc3e3b6e73d274f5ab972c72f73cdd3</citedby><cites>FETCH-LOGICAL-a330t-199358d2d6d4dc04e540072b082b5f0a13cc3e3b6e73d274f5ab972c72f73cdd3</cites><orcidid>0000-0003-4259-7725 ; 0000-0002-1732-295X ; 0000-0003-2347-288X ; 0000-0002-7402-9194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b21579$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b21579$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32028764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Wu, Buke</creatorcontrib><creatorcontrib>Yan, Mengyu</creatorcontrib><creatorcontrib>He, Liang</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Zhang, Guobin</creatorcontrib><creatorcontrib>Xiong, Tengfei</creatorcontrib><creatorcontrib>Luo, Wen</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><title>Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A rechargeable aqueous zinc-ion battery (ZIB) is one of the attractive candidates for large-scale energy storage. Its further application relies on the exploitation of a high-capacity cathode and the understanding of an intrinsic energy storage mechanism. Herein, we report a novel layered K2V3O8 cathode material for the ZIB, adopting a strategy of charging first to extract part of K-ions from vanadate in initial few cycles, which creates more electrochemically active sites and lowers charge-transfer resistance of the ZIB system. As a result, a considerable specific capacity of 302.8 mA h g–1 at 0.1 A g–1, as well as a remarkable cycling stability (92.3% capacity retention at 4 A g–1 for 2000 cycles) and good rate capability, are achieved. Besides, the energy storage mechanism was studied by in situ X-ray diffraction, in situ Raman spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma mass spectroscopy. An irreversible K-ion deintercalation in the first charge process is proved. It is believed that this novel cathode material for the rechargeable aqueous ZIB and the optimizing strategy will shed light on developing next-generation large-scale energy storage devices.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqWwMiKPCCnF8SNORogorVS1CywslmM7ras8iu0glV9PUEo3pnOH7xzpfgDcxmgaIxw_SuVlbadZgWPGszMwjjNKoxQzfH66KR2BK-93CCUEI3YJRn3glCd0DFar9stUMN9Kt7HNJlrvg63tt9Ewl2HbagPL1kEJZ9IHKBsN53azjXK5l8qGA_ywjYoWbQOfZQjGHa7BRSkrb26OOQHvs5e3fB4t16-L_GkZSUJQiOIsIyzVWCeaaoWoYRQhjguU4oKVSMZEKWJIkRhONOa0ZLLIOFYcl5worckE3A-7e9d-dsYHUVuvTFXJxrSdF5gwnBBKOO7R6YAq13rvTCn2ztbSHUSMxK9DMTgUR4d94e643RW10Sf8T1oPPAxAXxS7tnNN_-p_az_XE3qb</recordid><startdate>20200304</startdate><enddate>20200304</enddate><creator>Li, Zhi</creator><creator>Wu, Buke</creator><creator>Yan, Mengyu</creator><creator>He, Liang</creator><creator>Xu, Lin</creator><creator>Zhang, Guobin</creator><creator>Xiong, Tengfei</creator><creator>Luo, Wen</creator><creator>Mai, Liqiang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4259-7725</orcidid><orcidid>https://orcid.org/0000-0002-1732-295X</orcidid><orcidid>https://orcid.org/0000-0003-2347-288X</orcidid><orcidid>https://orcid.org/0000-0002-7402-9194</orcidid></search><sort><creationdate>20200304</creationdate><title>Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery</title><author>Li, Zhi ; Wu, Buke ; Yan, Mengyu ; He, Liang ; Xu, Lin ; Zhang, Guobin ; Xiong, Tengfei ; Luo, Wen ; Mai, Liqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-199358d2d6d4dc04e540072b082b5f0a13cc3e3b6e73d274f5ab972c72f73cdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Wu, Buke</creatorcontrib><creatorcontrib>Yan, Mengyu</creatorcontrib><creatorcontrib>He, Liang</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Zhang, Guobin</creatorcontrib><creatorcontrib>Xiong, Tengfei</creatorcontrib><creatorcontrib>Luo, Wen</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhi</au><au>Wu, Buke</au><au>Yan, Mengyu</au><au>He, Liang</au><au>Xu, Lin</au><au>Zhang, Guobin</au><au>Xiong, Tengfei</au><au>Luo, Wen</au><au>Mai, Liqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-03-04</date><risdate>2020</risdate><volume>12</volume><issue>9</issue><spage>10420</spage><epage>10427</epage><pages>10420-10427</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A rechargeable aqueous zinc-ion battery (ZIB) is one of the attractive candidates for large-scale energy storage. Its further application relies on the exploitation of a high-capacity cathode and the understanding of an intrinsic energy storage mechanism. Herein, we report a novel layered K2V3O8 cathode material for the ZIB, adopting a strategy of charging first to extract part of K-ions from vanadate in initial few cycles, which creates more electrochemically active sites and lowers charge-transfer resistance of the ZIB system. As a result, a considerable specific capacity of 302.8 mA h g–1 at 0.1 A g–1, as well as a remarkable cycling stability (92.3% capacity retention at 4 A g–1 for 2000 cycles) and good rate capability, are achieved. Besides, the energy storage mechanism was studied by in situ X-ray diffraction, in situ Raman spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma mass spectroscopy. An irreversible K-ion deintercalation in the first charge process is proved. It is believed that this novel cathode material for the rechargeable aqueous ZIB and the optimizing strategy will shed light on developing next-generation large-scale energy storage devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32028764</pmid><doi>10.1021/acsami.9b21579</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4259-7725</orcidid><orcidid>https://orcid.org/0000-0002-1732-295X</orcidid><orcidid>https://orcid.org/0000-0003-2347-288X</orcidid><orcidid>https://orcid.org/0000-0002-7402-9194</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-03, Vol.12 (9), p.10420-10427
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2352634372
source American Chemical Society Journals
title Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Charging-Optimized%20Cathode%20for%20a%20Fast%20and%20High-Capacity%20Zinc-Ion%20Battery&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Li,%20Zhi&rft.date=2020-03-04&rft.volume=12&rft.issue=9&rft.spage=10420&rft.epage=10427&rft.pages=10420-10427&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b21579&rft_dat=%3Cproquest_cross%3E2352634372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352634372&rft_id=info:pmid/32028764&rfr_iscdi=true