Catalytic Semi‐Water–Gas Shift Reaction: A Simple Green Path to Formic Acid Fuel

Formic acid (FA) is a promising CO and hydrogen energy carrier, and currently its generation is mainly centered on the hydrogenation of CO2. However, it can also be obtained by the hydrothermal conversion of CO with H2O at very high pressures (>100 bar) and temperatures (>200 °C), which requir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2020-04, Vol.13 (7), p.1817-1824
Hauptverfasser: Qadir, Muhammad I., Castegnaro, Marcus V., Selau, Felipe F., Samperi, Mario, Fernandes, Jesum Alves, Morais, Jonder, Dupont, Jairton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1824
container_issue 7
container_start_page 1817
container_title ChemSusChem
container_volume 13
creator Qadir, Muhammad I.
Castegnaro, Marcus V.
Selau, Felipe F.
Samperi, Mario
Fernandes, Jesum Alves
Morais, Jonder
Dupont, Jairton
description Formic acid (FA) is a promising CO and hydrogen energy carrier, and currently its generation is mainly centered on the hydrogenation of CO2. However, it can also be obtained by the hydrothermal conversion of CO with H2O at very high pressures (>100 bar) and temperatures (>200 °C), which requires days to complete. Herein, it is demonstrated that by using a nano‐Ru/Fe alloy embedded in an ionic liquid (IL)‐hybrid silica in the presence of the appropriate IL in water, CO can be catalytically converted into free FA (0.73 m) under very mild reactions conditions (10 bar at 80 °C) with a turnover number of up to 1269. The catalyst was prepared by simple reduction/decomposition of Ru and Fe complexes in the IL, and it was then embedded into an IL‐hybrid silica {1‐n‐butyl‐3‐(3‐trimethoxysilylpropyl)‐imidazolium cations associated with hydrophilic (acetate, SILP‐OAc) and hydrophobic [bis((trifluoromethyl)sulfonyl)amide, SILP‐NTf2] anions}. The location of the alloy nanoparticles on the support is strongly related to the nature of the anion, that is, in the case of hydrophilic SILP‐OAc, RuFe nanoparticles are more exposed to the support surface than in the case of the hydrophobic SILP‐NTf2, as determined by Rutherford backscattering spectrometry. This catalytic membrane in the presence of H2O/CO and an appropriate IL, namely, 1,2‐dimethyl‐3‐n‐butylimidazolium 2‐methyl imidazolate (BMMIm⋅MeIm), is stable and recyclable for at least five runs, yielding a total of 4.34 m of free FA. Green route to formic acid: A simple method for the production of formic acid by the simple catalytic carbonylation of water under very mild reaction conditions is demonstrated. The method employs supported bimetallic Ru/Fe nanoparticles in the presence of ionic liquids.
doi_str_mv 10.1002/cssc.201903417
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2351481507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386245818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4107-896d13d8d1f7a2c15000fdb5411df22c7f086a03c4c74311601d05511e178f6a3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQQBdRrF9Xj7LgxUvrzGaz2XorwVahoJiK3sK62eCWpKm7CdJbf4LgP-wvMaVawYunmcObx_AIOUXoIQC71N7rHgPsQ8Ax2iEHKAXvhoI_7273ADvk0PspgIC-EPukEzBgjDN5QCaxqlWxqK2miSntavnxpGrjVsvPkfI0ebV5TR-M0rWtZld0QBNbzgtDR86YGb1X9SutKzqsXNkKBtpmdNiY4pjs5arw5uR7HpHH4fUkvumO70a38WDc1Rwh6sq-yDDIZIZ5pJjGEADy7CXkiFnOmI5ykEJBoLmOeIAoADMIQ0SDkcyFCo7IxcY7d9VbY3ydltZrUxRqZqrGpywIkcvWG7Xo-R90WjVu1n7XUlIwHkqULdXbUNpV3juTp3NnS-UWKUK67p2ue6fb3u3B2be2eSlNtsV_ArdAfwO828Is_tGlcZLEv_Iv3CCK_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386245818</pqid></control><display><type>article</type><title>Catalytic Semi‐Water–Gas Shift Reaction: A Simple Green Path to Formic Acid Fuel</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qadir, Muhammad I. ; Castegnaro, Marcus V. ; Selau, Felipe F. ; Samperi, Mario ; Fernandes, Jesum Alves ; Morais, Jonder ; Dupont, Jairton</creator><creatorcontrib>Qadir, Muhammad I. ; Castegnaro, Marcus V. ; Selau, Felipe F. ; Samperi, Mario ; Fernandes, Jesum Alves ; Morais, Jonder ; Dupont, Jairton</creatorcontrib><description>Formic acid (FA) is a promising CO and hydrogen energy carrier, and currently its generation is mainly centered on the hydrogenation of CO2. However, it can also be obtained by the hydrothermal conversion of CO with H2O at very high pressures (&gt;100 bar) and temperatures (&gt;200 °C), which requires days to complete. Herein, it is demonstrated that by using a nano‐Ru/Fe alloy embedded in an ionic liquid (IL)‐hybrid silica in the presence of the appropriate IL in water, CO can be catalytically converted into free FA (0.73 m) under very mild reactions conditions (10 bar at 80 °C) with a turnover number of up to 1269. The catalyst was prepared by simple reduction/decomposition of Ru and Fe complexes in the IL, and it was then embedded into an IL‐hybrid silica {1‐n‐butyl‐3‐(3‐trimethoxysilylpropyl)‐imidazolium cations associated with hydrophilic (acetate, SILP‐OAc) and hydrophobic [bis((trifluoromethyl)sulfonyl)amide, SILP‐NTf2] anions}. The location of the alloy nanoparticles on the support is strongly related to the nature of the anion, that is, in the case of hydrophilic SILP‐OAc, RuFe nanoparticles are more exposed to the support surface than in the case of the hydrophobic SILP‐NTf2, as determined by Rutherford backscattering spectrometry. This catalytic membrane in the presence of H2O/CO and an appropriate IL, namely, 1,2‐dimethyl‐3‐n‐butylimidazolium 2‐methyl imidazolate (BMMIm⋅MeIm), is stable and recyclable for at least five runs, yielding a total of 4.34 m of free FA. Green route to formic acid: A simple method for the production of formic acid by the simple catalytic carbonylation of water under very mild reaction conditions is demonstrated. The method employs supported bimetallic Ru/Fe nanoparticles in the presence of ionic liquids.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201903417</identifier><identifier>PMID: 32022428</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anions ; Backscattering ; carbon monoxide ; Current carriers ; Ferrous alloys ; Formic acid ; Hydrogen storage ; Hydrogen-based energy ; Hydrophilicity ; Hydrophobicity ; Ionic liquids ; Nanoalloys ; Nanoparticles ; RuFe nanoparticles ; semi-water–gas shift ; Shift reaction ; Silicon dioxide</subject><ispartof>ChemSusChem, 2020-04, Vol.13 (7), p.1817-1824</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4107-896d13d8d1f7a2c15000fdb5411df22c7f086a03c4c74311601d05511e178f6a3</citedby><cites>FETCH-LOGICAL-c4107-896d13d8d1f7a2c15000fdb5411df22c7f086a03c4c74311601d05511e178f6a3</cites><orcidid>0000-0003-3237-0770</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201903417$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201903417$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32022428$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qadir, Muhammad I.</creatorcontrib><creatorcontrib>Castegnaro, Marcus V.</creatorcontrib><creatorcontrib>Selau, Felipe F.</creatorcontrib><creatorcontrib>Samperi, Mario</creatorcontrib><creatorcontrib>Fernandes, Jesum Alves</creatorcontrib><creatorcontrib>Morais, Jonder</creatorcontrib><creatorcontrib>Dupont, Jairton</creatorcontrib><title>Catalytic Semi‐Water–Gas Shift Reaction: A Simple Green Path to Formic Acid Fuel</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Formic acid (FA) is a promising CO and hydrogen energy carrier, and currently its generation is mainly centered on the hydrogenation of CO2. However, it can also be obtained by the hydrothermal conversion of CO with H2O at very high pressures (&gt;100 bar) and temperatures (&gt;200 °C), which requires days to complete. Herein, it is demonstrated that by using a nano‐Ru/Fe alloy embedded in an ionic liquid (IL)‐hybrid silica in the presence of the appropriate IL in water, CO can be catalytically converted into free FA (0.73 m) under very mild reactions conditions (10 bar at 80 °C) with a turnover number of up to 1269. The catalyst was prepared by simple reduction/decomposition of Ru and Fe complexes in the IL, and it was then embedded into an IL‐hybrid silica {1‐n‐butyl‐3‐(3‐trimethoxysilylpropyl)‐imidazolium cations associated with hydrophilic (acetate, SILP‐OAc) and hydrophobic [bis((trifluoromethyl)sulfonyl)amide, SILP‐NTf2] anions}. The location of the alloy nanoparticles on the support is strongly related to the nature of the anion, that is, in the case of hydrophilic SILP‐OAc, RuFe nanoparticles are more exposed to the support surface than in the case of the hydrophobic SILP‐NTf2, as determined by Rutherford backscattering spectrometry. This catalytic membrane in the presence of H2O/CO and an appropriate IL, namely, 1,2‐dimethyl‐3‐n‐butylimidazolium 2‐methyl imidazolate (BMMIm⋅MeIm), is stable and recyclable for at least five runs, yielding a total of 4.34 m of free FA. Green route to formic acid: A simple method for the production of formic acid by the simple catalytic carbonylation of water under very mild reaction conditions is demonstrated. The method employs supported bimetallic Ru/Fe nanoparticles in the presence of ionic liquids.</description><subject>Anions</subject><subject>Backscattering</subject><subject>carbon monoxide</subject><subject>Current carriers</subject><subject>Ferrous alloys</subject><subject>Formic acid</subject><subject>Hydrogen storage</subject><subject>Hydrogen-based energy</subject><subject>Hydrophilicity</subject><subject>Hydrophobicity</subject><subject>Ionic liquids</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>RuFe nanoparticles</subject><subject>semi-water–gas shift</subject><subject>Shift reaction</subject><subject>Silicon dioxide</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQQBdRrF9Xj7LgxUvrzGaz2XorwVahoJiK3sK62eCWpKm7CdJbf4LgP-wvMaVawYunmcObx_AIOUXoIQC71N7rHgPsQ8Ax2iEHKAXvhoI_7273ADvk0PspgIC-EPukEzBgjDN5QCaxqlWxqK2miSntavnxpGrjVsvPkfI0ebV5TR-M0rWtZld0QBNbzgtDR86YGb1X9SutKzqsXNkKBtpmdNiY4pjs5arw5uR7HpHH4fUkvumO70a38WDc1Rwh6sq-yDDIZIZ5pJjGEADy7CXkiFnOmI5ykEJBoLmOeIAoADMIQ0SDkcyFCo7IxcY7d9VbY3ydltZrUxRqZqrGpywIkcvWG7Xo-R90WjVu1n7XUlIwHkqULdXbUNpV3juTp3NnS-UWKUK67p2ue6fb3u3B2be2eSlNtsV_ArdAfwO828Is_tGlcZLEv_Iv3CCK_Q</recordid><startdate>20200407</startdate><enddate>20200407</enddate><creator>Qadir, Muhammad I.</creator><creator>Castegnaro, Marcus V.</creator><creator>Selau, Felipe F.</creator><creator>Samperi, Mario</creator><creator>Fernandes, Jesum Alves</creator><creator>Morais, Jonder</creator><creator>Dupont, Jairton</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3237-0770</orcidid></search><sort><creationdate>20200407</creationdate><title>Catalytic Semi‐Water–Gas Shift Reaction: A Simple Green Path to Formic Acid Fuel</title><author>Qadir, Muhammad I. ; Castegnaro, Marcus V. ; Selau, Felipe F. ; Samperi, Mario ; Fernandes, Jesum Alves ; Morais, Jonder ; Dupont, Jairton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4107-896d13d8d1f7a2c15000fdb5411df22c7f086a03c4c74311601d05511e178f6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anions</topic><topic>Backscattering</topic><topic>carbon monoxide</topic><topic>Current carriers</topic><topic>Ferrous alloys</topic><topic>Formic acid</topic><topic>Hydrogen storage</topic><topic>Hydrogen-based energy</topic><topic>Hydrophilicity</topic><topic>Hydrophobicity</topic><topic>Ionic liquids</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>RuFe nanoparticles</topic><topic>semi-water–gas shift</topic><topic>Shift reaction</topic><topic>Silicon dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qadir, Muhammad I.</creatorcontrib><creatorcontrib>Castegnaro, Marcus V.</creatorcontrib><creatorcontrib>Selau, Felipe F.</creatorcontrib><creatorcontrib>Samperi, Mario</creatorcontrib><creatorcontrib>Fernandes, Jesum Alves</creatorcontrib><creatorcontrib>Morais, Jonder</creatorcontrib><creatorcontrib>Dupont, Jairton</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qadir, Muhammad I.</au><au>Castegnaro, Marcus V.</au><au>Selau, Felipe F.</au><au>Samperi, Mario</au><au>Fernandes, Jesum Alves</au><au>Morais, Jonder</au><au>Dupont, Jairton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Semi‐Water–Gas Shift Reaction: A Simple Green Path to Formic Acid Fuel</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2020-04-07</date><risdate>2020</risdate><volume>13</volume><issue>7</issue><spage>1817</spage><epage>1824</epage><pages>1817-1824</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Formic acid (FA) is a promising CO and hydrogen energy carrier, and currently its generation is mainly centered on the hydrogenation of CO2. However, it can also be obtained by the hydrothermal conversion of CO with H2O at very high pressures (&gt;100 bar) and temperatures (&gt;200 °C), which requires days to complete. Herein, it is demonstrated that by using a nano‐Ru/Fe alloy embedded in an ionic liquid (IL)‐hybrid silica in the presence of the appropriate IL in water, CO can be catalytically converted into free FA (0.73 m) under very mild reactions conditions (10 bar at 80 °C) with a turnover number of up to 1269. The catalyst was prepared by simple reduction/decomposition of Ru and Fe complexes in the IL, and it was then embedded into an IL‐hybrid silica {1‐n‐butyl‐3‐(3‐trimethoxysilylpropyl)‐imidazolium cations associated with hydrophilic (acetate, SILP‐OAc) and hydrophobic [bis((trifluoromethyl)sulfonyl)amide, SILP‐NTf2] anions}. The location of the alloy nanoparticles on the support is strongly related to the nature of the anion, that is, in the case of hydrophilic SILP‐OAc, RuFe nanoparticles are more exposed to the support surface than in the case of the hydrophobic SILP‐NTf2, as determined by Rutherford backscattering spectrometry. This catalytic membrane in the presence of H2O/CO and an appropriate IL, namely, 1,2‐dimethyl‐3‐n‐butylimidazolium 2‐methyl imidazolate (BMMIm⋅MeIm), is stable and recyclable for at least five runs, yielding a total of 4.34 m of free FA. Green route to formic acid: A simple method for the production of formic acid by the simple catalytic carbonylation of water under very mild reaction conditions is demonstrated. The method employs supported bimetallic Ru/Fe nanoparticles in the presence of ionic liquids.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32022428</pmid><doi>10.1002/cssc.201903417</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3237-0770</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2020-04, Vol.13 (7), p.1817-1824
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_2351481507
source Wiley Online Library Journals Frontfile Complete
subjects Anions
Backscattering
carbon monoxide
Current carriers
Ferrous alloys
Formic acid
Hydrogen storage
Hydrogen-based energy
Hydrophilicity
Hydrophobicity
Ionic liquids
Nanoalloys
Nanoparticles
RuFe nanoparticles
semi-water–gas shift
Shift reaction
Silicon dioxide
title Catalytic Semi‐Water–Gas Shift Reaction: A Simple Green Path to Formic Acid Fuel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Semi%E2%80%90Water%E2%80%93Gas%20Shift%20Reaction:%20A%20Simple%20Green%20Path%20to%20Formic%20Acid%20Fuel&rft.jtitle=ChemSusChem&rft.au=Qadir,%20Muhammad%20I.&rft.date=2020-04-07&rft.volume=13&rft.issue=7&rft.spage=1817&rft.epage=1824&rft.pages=1817-1824&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201903417&rft_dat=%3Cproquest_cross%3E2386245818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2386245818&rft_id=info:pmid/32022428&rfr_iscdi=true