Transcriptome Analysis of Rice Roots in Response to Root-Knot Nematode Infection
Meloidogyne incognita and Meloidogyne graminicola are root-knot nematodes (RKNs) infecting rice (Oryza sativa L.) roots and severely decreasing yield, whose mechanisms of action remain unclear. We investigated RKN invasion and development in rice roots through RNA-seq transcriptome analysis. The res...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-01, Vol.21 (3), p.848, Article 848 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 848 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Zhou, Yuan Zhao, Di Shuang, Li Xiao, Dongxue Xuan, Yuanhu Duan, Yuxi Chen, Lijie Wang, Yuanyuan Liu, Xiaoyu Fan, Haiyan Zhu, Xiaofeng |
description | Meloidogyne incognita and Meloidogyne graminicola are root-knot nematodes (RKNs) infecting rice (Oryza sativa L.) roots and severely decreasing yield, whose mechanisms of action remain unclear. We investigated RKN invasion and development in rice roots through RNA-seq transcriptome analysis. The results showed that 952 and 647 genes were differently expressed after 6 (invasion stage) and 18 (development stage) days post inoculation, respectively. Gene annotation showed that the differentially expressed genes were classified into diverse metabolic and stress response categories. Furthermore, phytohormone, transcription factor, redox signaling, and defense response pathways were enriched upon RKN infection. RNA-seq validation using qRT-PCR confirmed that CBL-interacting protein kinase (CIPK) genes (CIPK5, 8, 9, 11, 14, 23, 24, and 31) as well as brassinosteroid (BR)-related genes (OsBAK1, OsBRI1, D2, and D11) were altered by RKN infection. Analysis of the CIPK9 mutant and overexpressor indicated that the RKN populations were smaller in cipk9 and larger in CIPK9 OX, while more galls were produced in CIPK9 OX plant roots than the in wild-type roots. Significantly fewer numbers of second-stage infective juveniles (J2s) were observed in the plants expressing the BR biosynthesis gene D2 mutant and the BR receptor BRI1 activation-tagged mutant (bri1-D), and fewer galls were observed in bri1-D roots than in wild-type roots. The roots of plants expressing the regulator of ethylene signaling ERS1 (ethylene response sensor 1) mutant contained higher numbers of J2s and developed more galls compared with wild-type roots, suggesting that these signals function in RKN invasion or development. Our findings broaden our understanding of rice responses to RKN invasion and provide useful information for further research on RKN defense mechanisms. |
doi_str_mv | 10.3390/ijms21030848 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_miscellaneous_2350906522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6fa358a8dd744aabb0bef41b7b0a2f9c</doaj_id><sourcerecordid>2350906522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-4ee87580563f196362f68499bfc8d1432bce96270fec05bd44cc5435e9e127623</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgdRbK3eeS0D3gi6evI5MzdCWfxYLCpLvQ6ZzEnNMpNsk4zSf2-2W5etV14lnDw8vCdvVT0n8JaxDt65zZQoAQYtbx9Up4RTugCQzcOj-0n1JKUNAGVUdI-rE0aBMCDktPp-GbVPJrptDhPW516PN8mlOth67QzW6xByqp2v15i2wSesc7gdLr74kOuvOOkcBqxX3qLJLvin1SOrx4TP7s6z6sfHD5fLz4uLb59Wy_OLheFNmxccsW1EC0IySzrJJLWy5V3XW9MOhDPaG-wkbaBoQfQD58YIzgR2SGgjKTurVnvvEPRGbaObdLxRQTt1OwjxSumYnRlRSauZaHU7DA3nWvc99Gg56ZseNLWdKa73e9d27iccDPoc9XhPev_Fu5_qKvxSDbCmbFEEr-4EMVzPmLKaXDI4jtpjmJOiTEAHUtBd7pf_oJswx_LthRK8lY3oOC_Umz1lYkgpoj2EIaB2tavj2gv-4niBA_y35wK83gO_sQ82GYfe4AEDgBJNCCKLD3YZ2_-nly7rXfHLMPvM_gBKnckU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548675944</pqid></control><display><type>article</type><title>Transcriptome Analysis of Rice Roots in Response to Root-Knot Nematode Infection</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Zhou, Yuan ; Zhao, Di ; Shuang, Li ; Xiao, Dongxue ; Xuan, Yuanhu ; Duan, Yuxi ; Chen, Lijie ; Wang, Yuanyuan ; Liu, Xiaoyu ; Fan, Haiyan ; Zhu, Xiaofeng</creator><creatorcontrib>Zhou, Yuan ; Zhao, Di ; Shuang, Li ; Xiao, Dongxue ; Xuan, Yuanhu ; Duan, Yuxi ; Chen, Lijie ; Wang, Yuanyuan ; Liu, Xiaoyu ; Fan, Haiyan ; Zhu, Xiaofeng</creatorcontrib><description>Meloidogyne incognita and Meloidogyne graminicola are root-knot nematodes (RKNs) infecting rice (Oryza sativa L.) roots and severely decreasing yield, whose mechanisms of action remain unclear. We investigated RKN invasion and development in rice roots through RNA-seq transcriptome analysis. The results showed that 952 and 647 genes were differently expressed after 6 (invasion stage) and 18 (development stage) days post inoculation, respectively. Gene annotation showed that the differentially expressed genes were classified into diverse metabolic and stress response categories. Furthermore, phytohormone, transcription factor, redox signaling, and defense response pathways were enriched upon RKN infection. RNA-seq validation using qRT-PCR confirmed that CBL-interacting protein kinase (CIPK) genes (CIPK5, 8, 9, 11, 14, 23, 24, and 31) as well as brassinosteroid (BR)-related genes (OsBAK1, OsBRI1, D2, and D11) were altered by RKN infection. Analysis of the CIPK9 mutant and overexpressor indicated that the RKN populations were smaller in cipk9 and larger in CIPK9 OX, while more galls were produced in CIPK9 OX plant roots than the in wild-type roots. Significantly fewer numbers of second-stage infective juveniles (J2s) were observed in the plants expressing the BR biosynthesis gene D2 mutant and the BR receptor BRI1 activation-tagged mutant (bri1-D), and fewer galls were observed in bri1-D roots than in wild-type roots. The roots of plants expressing the regulator of ethylene signaling ERS1 (ethylene response sensor 1) mutant contained higher numbers of J2s and developed more galls compared with wild-type roots, suggesting that these signals function in RKN invasion or development. Our findings broaden our understanding of rice responses to RKN invasion and provide useful information for further research on RKN defense mechanisms.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21030848</identifier><identifier>PMID: 32013011</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Annotations ; Biochemistry & Molecular Biology ; Biosynthesis ; Cell cycle ; Cellular stress response ; Chemistry ; Chemistry, Multidisciplinary ; Defense mechanisms ; Ethylene ; Galls ; Genes ; Hormones ; Infections ; Inoculation ; Life Sciences & Biomedicine ; Meloidogyne graminicola ; Meloidogyne incognita ; Metabolism ; Mutants ; Nematodes ; Oryza sativa ; Pathogens ; Physical Sciences ; plant defense ; Plant roots ; Protein kinase ; Proteins ; Rice ; root-knot nematode ; Science & Technology ; Transcriptomes</subject><ispartof>International journal of molecular sciences, 2020-01, Vol.21 (3), p.848, Article 848</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>19</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000522551603002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c478t-4ee87580563f196362f68499bfc8d1432bce96270fec05bd44cc5435e9e127623</citedby><cites>FETCH-LOGICAL-c478t-4ee87580563f196362f68499bfc8d1432bce96270fec05bd44cc5435e9e127623</cites><orcidid>0000-0002-4704-8090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037758/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037758/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32013011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yuan</creatorcontrib><creatorcontrib>Zhao, Di</creatorcontrib><creatorcontrib>Shuang, Li</creatorcontrib><creatorcontrib>Xiao, Dongxue</creatorcontrib><creatorcontrib>Xuan, Yuanhu</creatorcontrib><creatorcontrib>Duan, Yuxi</creatorcontrib><creatorcontrib>Chen, Lijie</creatorcontrib><creatorcontrib>Wang, Yuanyuan</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Fan, Haiyan</creatorcontrib><creatorcontrib>Zhu, Xiaofeng</creatorcontrib><title>Transcriptome Analysis of Rice Roots in Response to Root-Knot Nematode Infection</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>Meloidogyne incognita and Meloidogyne graminicola are root-knot nematodes (RKNs) infecting rice (Oryza sativa L.) roots and severely decreasing yield, whose mechanisms of action remain unclear. We investigated RKN invasion and development in rice roots through RNA-seq transcriptome analysis. The results showed that 952 and 647 genes were differently expressed after 6 (invasion stage) and 18 (development stage) days post inoculation, respectively. Gene annotation showed that the differentially expressed genes were classified into diverse metabolic and stress response categories. Furthermore, phytohormone, transcription factor, redox signaling, and defense response pathways were enriched upon RKN infection. RNA-seq validation using qRT-PCR confirmed that CBL-interacting protein kinase (CIPK) genes (CIPK5, 8, 9, 11, 14, 23, 24, and 31) as well as brassinosteroid (BR)-related genes (OsBAK1, OsBRI1, D2, and D11) were altered by RKN infection. Analysis of the CIPK9 mutant and overexpressor indicated that the RKN populations were smaller in cipk9 and larger in CIPK9 OX, while more galls were produced in CIPK9 OX plant roots than the in wild-type roots. Significantly fewer numbers of second-stage infective juveniles (J2s) were observed in the plants expressing the BR biosynthesis gene D2 mutant and the BR receptor BRI1 activation-tagged mutant (bri1-D), and fewer galls were observed in bri1-D roots than in wild-type roots. The roots of plants expressing the regulator of ethylene signaling ERS1 (ethylene response sensor 1) mutant contained higher numbers of J2s and developed more galls compared with wild-type roots, suggesting that these signals function in RKN invasion or development. Our findings broaden our understanding of rice responses to RKN invasion and provide useful information for further research on RKN defense mechanisms.</description><subject>Annotations</subject><subject>Biochemistry & Molecular Biology</subject><subject>Biosynthesis</subject><subject>Cell cycle</subject><subject>Cellular stress response</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Defense mechanisms</subject><subject>Ethylene</subject><subject>Galls</subject><subject>Genes</subject><subject>Hormones</subject><subject>Infections</subject><subject>Inoculation</subject><subject>Life Sciences & Biomedicine</subject><subject>Meloidogyne graminicola</subject><subject>Meloidogyne incognita</subject><subject>Metabolism</subject><subject>Mutants</subject><subject>Nematodes</subject><subject>Oryza sativa</subject><subject>Pathogens</subject><subject>Physical Sciences</subject><subject>plant defense</subject><subject>Plant roots</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Rice</subject><subject>root-knot nematode</subject><subject>Science & Technology</subject><subject>Transcriptomes</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkV1rFDEUhgdRbK3eeS0D3gi6evI5MzdCWfxYLCpLvQ6ZzEnNMpNsk4zSf2-2W5etV14lnDw8vCdvVT0n8JaxDt65zZQoAQYtbx9Up4RTugCQzcOj-0n1JKUNAGVUdI-rE0aBMCDktPp-GbVPJrptDhPW516PN8mlOth67QzW6xByqp2v15i2wSesc7gdLr74kOuvOOkcBqxX3qLJLvin1SOrx4TP7s6z6sfHD5fLz4uLb59Wy_OLheFNmxccsW1EC0IySzrJJLWy5V3XW9MOhDPaG-wkbaBoQfQD58YIzgR2SGgjKTurVnvvEPRGbaObdLxRQTt1OwjxSumYnRlRSauZaHU7DA3nWvc99Gg56ZseNLWdKa73e9d27iccDPoc9XhPev_Fu5_qKvxSDbCmbFEEr-4EMVzPmLKaXDI4jtpjmJOiTEAHUtBd7pf_oJswx_LthRK8lY3oOC_Umz1lYkgpoj2EIaB2tavj2gv-4niBA_y35wK83gO_sQ82GYfe4AEDgBJNCCKLD3YZ2_-nly7rXfHLMPvM_gBKnckU</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Zhou, Yuan</creator><creator>Zhao, Di</creator><creator>Shuang, Li</creator><creator>Xiao, Dongxue</creator><creator>Xuan, Yuanhu</creator><creator>Duan, Yuxi</creator><creator>Chen, Lijie</creator><creator>Wang, Yuanyuan</creator><creator>Liu, Xiaoyu</creator><creator>Fan, Haiyan</creator><creator>Zhu, Xiaofeng</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4704-8090</orcidid></search><sort><creationdate>20200128</creationdate><title>Transcriptome Analysis of Rice Roots in Response to Root-Knot Nematode Infection</title><author>Zhou, Yuan ; Zhao, Di ; Shuang, Li ; Xiao, Dongxue ; Xuan, Yuanhu ; Duan, Yuxi ; Chen, Lijie ; Wang, Yuanyuan ; Liu, Xiaoyu ; Fan, Haiyan ; Zhu, Xiaofeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-4ee87580563f196362f68499bfc8d1432bce96270fec05bd44cc5435e9e127623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annotations</topic><topic>Biochemistry & Molecular Biology</topic><topic>Biosynthesis</topic><topic>Cell cycle</topic><topic>Cellular stress response</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Defense mechanisms</topic><topic>Ethylene</topic><topic>Galls</topic><topic>Genes</topic><topic>Hormones</topic><topic>Infections</topic><topic>Inoculation</topic><topic>Life Sciences & Biomedicine</topic><topic>Meloidogyne graminicola</topic><topic>Meloidogyne incognita</topic><topic>Metabolism</topic><topic>Mutants</topic><topic>Nematodes</topic><topic>Oryza sativa</topic><topic>Pathogens</topic><topic>Physical Sciences</topic><topic>plant defense</topic><topic>Plant roots</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Rice</topic><topic>root-knot nematode</topic><topic>Science & Technology</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yuan</creatorcontrib><creatorcontrib>Zhao, Di</creatorcontrib><creatorcontrib>Shuang, Li</creatorcontrib><creatorcontrib>Xiao, Dongxue</creatorcontrib><creatorcontrib>Xuan, Yuanhu</creatorcontrib><creatorcontrib>Duan, Yuxi</creatorcontrib><creatorcontrib>Chen, Lijie</creatorcontrib><creatorcontrib>Wang, Yuanyuan</creatorcontrib><creatorcontrib>Liu, Xiaoyu</creatorcontrib><creatorcontrib>Fan, Haiyan</creatorcontrib><creatorcontrib>Zhu, Xiaofeng</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yuan</au><au>Zhao, Di</au><au>Shuang, Li</au><au>Xiao, Dongxue</au><au>Xuan, Yuanhu</au><au>Duan, Yuxi</au><au>Chen, Lijie</au><au>Wang, Yuanyuan</au><au>Liu, Xiaoyu</au><au>Fan, Haiyan</au><au>Zhu, Xiaofeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome Analysis of Rice Roots in Response to Root-Knot Nematode Infection</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>21</volume><issue>3</issue><spage>848</spage><pages>848-</pages><artnum>848</artnum><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Meloidogyne incognita and Meloidogyne graminicola are root-knot nematodes (RKNs) infecting rice (Oryza sativa L.) roots and severely decreasing yield, whose mechanisms of action remain unclear. We investigated RKN invasion and development in rice roots through RNA-seq transcriptome analysis. The results showed that 952 and 647 genes were differently expressed after 6 (invasion stage) and 18 (development stage) days post inoculation, respectively. Gene annotation showed that the differentially expressed genes were classified into diverse metabolic and stress response categories. Furthermore, phytohormone, transcription factor, redox signaling, and defense response pathways were enriched upon RKN infection. RNA-seq validation using qRT-PCR confirmed that CBL-interacting protein kinase (CIPK) genes (CIPK5, 8, 9, 11, 14, 23, 24, and 31) as well as brassinosteroid (BR)-related genes (OsBAK1, OsBRI1, D2, and D11) were altered by RKN infection. Analysis of the CIPK9 mutant and overexpressor indicated that the RKN populations were smaller in cipk9 and larger in CIPK9 OX, while more galls were produced in CIPK9 OX plant roots than the in wild-type roots. Significantly fewer numbers of second-stage infective juveniles (J2s) were observed in the plants expressing the BR biosynthesis gene D2 mutant and the BR receptor BRI1 activation-tagged mutant (bri1-D), and fewer galls were observed in bri1-D roots than in wild-type roots. The roots of plants expressing the regulator of ethylene signaling ERS1 (ethylene response sensor 1) mutant contained higher numbers of J2s and developed more galls compared with wild-type roots, suggesting that these signals function in RKN invasion or development. Our findings broaden our understanding of rice responses to RKN invasion and provide useful information for further research on RKN defense mechanisms.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>32013011</pmid><doi>10.3390/ijms21030848</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4704-8090</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-01, Vol.21 (3), p.848, Article 848 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_proquest_miscellaneous_2350906522 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Annotations Biochemistry & Molecular Biology Biosynthesis Cell cycle Cellular stress response Chemistry Chemistry, Multidisciplinary Defense mechanisms Ethylene Galls Genes Hormones Infections Inoculation Life Sciences & Biomedicine Meloidogyne graminicola Meloidogyne incognita Metabolism Mutants Nematodes Oryza sativa Pathogens Physical Sciences plant defense Plant roots Protein kinase Proteins Rice root-knot nematode Science & Technology Transcriptomes |
title | Transcriptome Analysis of Rice Roots in Response to Root-Knot Nematode Infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20Analysis%20of%20Rice%20Roots%20in%20Response%20to%20Root-Knot%20Nematode%20Infection&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zhou,%20Yuan&rft.date=2020-01-28&rft.volume=21&rft.issue=3&rft.spage=848&rft.pages=848-&rft.artnum=848&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21030848&rft_dat=%3Cproquest_webof%3E2350906522%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548675944&rft_id=info:pmid/32013011&rft_doaj_id=oai_doaj_org_article_6fa358a8dd744aabb0bef41b7b0a2f9c&rfr_iscdi=true |