Adversarial Learning for Joint Optimization of Depth and Ego-Motion

In recent years, supervised deep learning methods have shown a great promise in dense depth estimation. However, massive high-quality training data are expensive and impractical to acquire. Alternatively, self-supervised learning-based depth estimators can learn the latent transformation from monocu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2020-01, Vol.29, p.4130-4142
Hauptverfasser: Wang, Anjie, Fang, Zhijun, Gao, Yongbin, Tan, Songchao, Wang, Shanshe, Ma, Siwei, Hwang, Jenq-Neng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!