Heparin Mimic Material Derived from Cellulose Nanocrystals

This study analyzes and evaluates the use of cellulose nanocrystals (CNCs), stiff nanosized natural materials that have been modified to mimic heparin. These CNCs are simple polysaccharides with a similar backbone structure to heparin, which when modified reduces coagulation and potentially the long...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2020-03, Vol.21 (3), p.1103-1111
Hauptverfasser: Gallagher, Zahra J, Fleetwood, Sara, Kirley, Terence L, Shaw, Maureen A, Mullins, Eric S, Ayres, Neil, Foster, E. Johan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1111
container_issue 3
container_start_page 1103
container_title Biomacromolecules
container_volume 21
creator Gallagher, Zahra J
Fleetwood, Sara
Kirley, Terence L
Shaw, Maureen A
Mullins, Eric S
Ayres, Neil
Foster, E. Johan
description This study analyzes and evaluates the use of cellulose nanocrystals (CNCs), stiff nanosized natural materials that have been modified to mimic heparin. These CNCs are simple polysaccharides with a similar backbone structure to heparin, which when modified reduces coagulation and potentially the long-term effects of solution-based anticoagulants. Thus, CNCs represent an ideal foundation for generating materials biocompatible with blood. In this study, we developed a biocompatible material that inhibits blood clotting through surface functionalization to mimic heparin. Surface chemistry of CNCs was modified from “plain” CNCs (70 mmol SO3–/kg) to 500 mmol COO–/kg (TEMPO-oxidized CNCs) and 330 mmol SO3–/kg CNCs (sulfonated CNCs). Platelet adherence and blood assays show that changes in functionalization reduce coagulation. By utilizing and modifying CNCs reactive functional groups, we create a material with unique and favorable mechanical properties while also reducing clotting.
doi_str_mv 10.1021/acs.biomac.9b01460
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2350096543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350096543</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-7382c45001518f6b636776379fb9bc8ff8dd7d06f4d708f7f5aa115508f7169f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAYhC0EoqXwBxhQRpYEf8R2zIbKp9TCArPlOLbkKomLnSD13-OSwsh0N9yd3vcB4BLBAkGMbpSORe18p3QhaohKBo_AHFHM8mTx8Y-nOeeCz8BZjBsIoSAlPQUzgiEkgvM5uH02WxVcn61d53S2VoMJTrXZfZIv02Q2-C5bmrYdWx9N9qp6r8MuDqqN5-DEJjEXB12Aj8eH9-Vzvnp7elnerXJFSjzknFRYlxRCRFFlWc0I45wRLmwtal1ZWzUNbyCzZcNhZbmlSiFE6d4jJixZgOtpdxv852jiIDsXdTpJ9caPUWKSxgWjJUlRPEV18DEGY-U2uE6FnURQ7pnJxExOzOSBWSpdHfbHujPNX-UXUgoUU2Bf3vgx9Ond_xa_AcJieEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350096543</pqid></control><display><type>article</type><title>Heparin Mimic Material Derived from Cellulose Nanocrystals</title><source>ACS Publications</source><creator>Gallagher, Zahra J ; Fleetwood, Sara ; Kirley, Terence L ; Shaw, Maureen A ; Mullins, Eric S ; Ayres, Neil ; Foster, E. Johan</creator><creatorcontrib>Gallagher, Zahra J ; Fleetwood, Sara ; Kirley, Terence L ; Shaw, Maureen A ; Mullins, Eric S ; Ayres, Neil ; Foster, E. Johan</creatorcontrib><description>This study analyzes and evaluates the use of cellulose nanocrystals (CNCs), stiff nanosized natural materials that have been modified to mimic heparin. These CNCs are simple polysaccharides with a similar backbone structure to heparin, which when modified reduces coagulation and potentially the long-term effects of solution-based anticoagulants. Thus, CNCs represent an ideal foundation for generating materials biocompatible with blood. In this study, we developed a biocompatible material that inhibits blood clotting through surface functionalization to mimic heparin. Surface chemistry of CNCs was modified from “plain” CNCs (70 mmol SO3–/kg) to 500 mmol COO–/kg (TEMPO-oxidized CNCs) and 330 mmol SO3–/kg CNCs (sulfonated CNCs). Platelet adherence and blood assays show that changes in functionalization reduce coagulation. By utilizing and modifying CNCs reactive functional groups, we create a material with unique and favorable mechanical properties while also reducing clotting.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.9b01460</identifier><identifier>PMID: 32003977</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Biomacromolecules, 2020-03, Vol.21 (3), p.1103-1111</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-7382c45001518f6b636776379fb9bc8ff8dd7d06f4d708f7f5aa115508f7169f3</citedby><cites>FETCH-LOGICAL-a342t-7382c45001518f6b636776379fb9bc8ff8dd7d06f4d708f7f5aa115508f7169f3</cites><orcidid>0000-0002-4103-8510 ; 0000-0001-8718-2502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biomac.9b01460$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biomac.9b01460$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32003977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gallagher, Zahra J</creatorcontrib><creatorcontrib>Fleetwood, Sara</creatorcontrib><creatorcontrib>Kirley, Terence L</creatorcontrib><creatorcontrib>Shaw, Maureen A</creatorcontrib><creatorcontrib>Mullins, Eric S</creatorcontrib><creatorcontrib>Ayres, Neil</creatorcontrib><creatorcontrib>Foster, E. Johan</creatorcontrib><title>Heparin Mimic Material Derived from Cellulose Nanocrystals</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>This study analyzes and evaluates the use of cellulose nanocrystals (CNCs), stiff nanosized natural materials that have been modified to mimic heparin. These CNCs are simple polysaccharides with a similar backbone structure to heparin, which when modified reduces coagulation and potentially the long-term effects of solution-based anticoagulants. Thus, CNCs represent an ideal foundation for generating materials biocompatible with blood. In this study, we developed a biocompatible material that inhibits blood clotting through surface functionalization to mimic heparin. Surface chemistry of CNCs was modified from “plain” CNCs (70 mmol SO3–/kg) to 500 mmol COO–/kg (TEMPO-oxidized CNCs) and 330 mmol SO3–/kg CNCs (sulfonated CNCs). Platelet adherence and blood assays show that changes in functionalization reduce coagulation. By utilizing and modifying CNCs reactive functional groups, we create a material with unique and favorable mechanical properties while also reducing clotting.</description><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAYhC0EoqXwBxhQRpYEf8R2zIbKp9TCArPlOLbkKomLnSD13-OSwsh0N9yd3vcB4BLBAkGMbpSORe18p3QhaohKBo_AHFHM8mTx8Y-nOeeCz8BZjBsIoSAlPQUzgiEkgvM5uH02WxVcn61d53S2VoMJTrXZfZIv02Q2-C5bmrYdWx9N9qp6r8MuDqqN5-DEJjEXB12Aj8eH9-Vzvnp7elnerXJFSjzknFRYlxRCRFFlWc0I45wRLmwtal1ZWzUNbyCzZcNhZbmlSiFE6d4jJixZgOtpdxv852jiIDsXdTpJ9caPUWKSxgWjJUlRPEV18DEGY-U2uE6FnURQ7pnJxExOzOSBWSpdHfbHujPNX-UXUgoUU2Bf3vgx9Ond_xa_AcJieEc</recordid><startdate>20200309</startdate><enddate>20200309</enddate><creator>Gallagher, Zahra J</creator><creator>Fleetwood, Sara</creator><creator>Kirley, Terence L</creator><creator>Shaw, Maureen A</creator><creator>Mullins, Eric S</creator><creator>Ayres, Neil</creator><creator>Foster, E. Johan</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4103-8510</orcidid><orcidid>https://orcid.org/0000-0001-8718-2502</orcidid></search><sort><creationdate>20200309</creationdate><title>Heparin Mimic Material Derived from Cellulose Nanocrystals</title><author>Gallagher, Zahra J ; Fleetwood, Sara ; Kirley, Terence L ; Shaw, Maureen A ; Mullins, Eric S ; Ayres, Neil ; Foster, E. Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-7382c45001518f6b636776379fb9bc8ff8dd7d06f4d708f7f5aa115508f7169f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallagher, Zahra J</creatorcontrib><creatorcontrib>Fleetwood, Sara</creatorcontrib><creatorcontrib>Kirley, Terence L</creatorcontrib><creatorcontrib>Shaw, Maureen A</creatorcontrib><creatorcontrib>Mullins, Eric S</creatorcontrib><creatorcontrib>Ayres, Neil</creatorcontrib><creatorcontrib>Foster, E. Johan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallagher, Zahra J</au><au>Fleetwood, Sara</au><au>Kirley, Terence L</au><au>Shaw, Maureen A</au><au>Mullins, Eric S</au><au>Ayres, Neil</au><au>Foster, E. Johan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heparin Mimic Material Derived from Cellulose Nanocrystals</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2020-03-09</date><risdate>2020</risdate><volume>21</volume><issue>3</issue><spage>1103</spage><epage>1111</epage><pages>1103-1111</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>This study analyzes and evaluates the use of cellulose nanocrystals (CNCs), stiff nanosized natural materials that have been modified to mimic heparin. These CNCs are simple polysaccharides with a similar backbone structure to heparin, which when modified reduces coagulation and potentially the long-term effects of solution-based anticoagulants. Thus, CNCs represent an ideal foundation for generating materials biocompatible with blood. In this study, we developed a biocompatible material that inhibits blood clotting through surface functionalization to mimic heparin. Surface chemistry of CNCs was modified from “plain” CNCs (70 mmol SO3–/kg) to 500 mmol COO–/kg (TEMPO-oxidized CNCs) and 330 mmol SO3–/kg CNCs (sulfonated CNCs). Platelet adherence and blood assays show that changes in functionalization reduce coagulation. By utilizing and modifying CNCs reactive functional groups, we create a material with unique and favorable mechanical properties while also reducing clotting.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32003977</pmid><doi>10.1021/acs.biomac.9b01460</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4103-8510</orcidid><orcidid>https://orcid.org/0000-0001-8718-2502</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2020-03, Vol.21 (3), p.1103-1111
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_2350096543
source ACS Publications
title Heparin Mimic Material Derived from Cellulose Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heparin%20Mimic%20Material%20Derived%20from%20Cellulose%20Nanocrystals&rft.jtitle=Biomacromolecules&rft.au=Gallagher,%20Zahra%20J&rft.date=2020-03-09&rft.volume=21&rft.issue=3&rft.spage=1103&rft.epage=1111&rft.pages=1103-1111&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.9b01460&rft_dat=%3Cproquest_cross%3E2350096543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350096543&rft_id=info:pmid/32003977&rfr_iscdi=true