SAMPL6 logP challenge: machine learning and quantum mechanical approaches
Two different types of approaches: (a) approaches that combine quantitative structure activity relationships, quantum mechanical electronic structure methods, and machine-learning and, (b) electronic structure vertical solvation approaches, were used to predict the log P coefficients of 11 molecules...
Gespeichert in:
Veröffentlicht in: | Journal of computer-aided molecular design 2020-05, Vol.34 (5), p.495-510 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 510 |
---|---|
container_issue | 5 |
container_start_page | 495 |
container_title | Journal of computer-aided molecular design |
container_volume | 34 |
creator | Patel, Prajay Kuntz, David M. Jones, Michael R. Brooks, Bernard R. Wilson, Angela K. |
description | Two different types of approaches: (a) approaches that combine quantitative structure activity relationships, quantum mechanical electronic structure methods, and machine-learning and, (b) electronic structure vertical solvation approaches, were used to predict the log
P
coefficients of 11 molecules as part of the SAMPL6 log
P
blind prediction challenge. Using electronic structures optimized with density functional theory (DFT), several molecular descriptors were calculated for each molecule, including van der Waals areas and volumes, HOMO/LUMO energies, dipole moments, polarizabilities, and electrophilic and nucleophilic superdelocalizabilities. A multilinear regression model and a partial least squares model were used to train a set of 97 molecules. As well, descriptors were generated using the molecular operating environment and used to create additional machine learning models. Electronic structure vertical solvation approaches considered include DFT and the domain-based local pair natural orbital methods combined with the solvated variant of the correlation consistent composite approach. |
doi_str_mv | 10.1007/s10822-020-00287-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2350093715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387228274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-87dc890478ae82d38f3765e45f08e553357f6f05190c48b270f067d4a2877bfc3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EouXjDzAgSywsgWc7jh22quKjUhGVAInNch2nTZU4rd0M_HsMKSAxMHl4597ndxA6I3BFAMR1ICApTYBCAkClSGAPDQkXLElzTvbREPI4ynj6NkBHIawghvIMDtGA0RgQEoZo8jx6nE0zXLeLGTZLXdfWLewNbrRZVs7i2mrvKrfA2hV402m37Rrc2Ei6yuga6_Xat5G14QQdlLoO9nT3HqPXu9uX8UMyfbqfjEfTxDDBt4kUhZE5pEJqK2nBZMlExm3KS5CWc8a4KLMSOMnBpHJOBZSQiSLV8UAxLw07Rpd9b1y86WzYqqYKxta1drbtgqKMA-RMEB7Riz_oqu28i7-LlBSUSirSSNGeMr4NwdtSrX3VaP-uCKhP0aoXraJo9SVaQQyd76q7eWOLn8i32QiwHghxFJX6393_1H4AoIKF9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387228274</pqid></control><display><type>article</type><title>SAMPL6 logP challenge: machine learning and quantum mechanical approaches</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Patel, Prajay ; Kuntz, David M. ; Jones, Michael R. ; Brooks, Bernard R. ; Wilson, Angela K.</creator><creatorcontrib>Patel, Prajay ; Kuntz, David M. ; Jones, Michael R. ; Brooks, Bernard R. ; Wilson, Angela K.</creatorcontrib><description>Two different types of approaches: (a) approaches that combine quantitative structure activity relationships, quantum mechanical electronic structure methods, and machine-learning and, (b) electronic structure vertical solvation approaches, were used to predict the log
P
coefficients of 11 molecules as part of the SAMPL6 log
P
blind prediction challenge. Using electronic structures optimized with density functional theory (DFT), several molecular descriptors were calculated for each molecule, including van der Waals areas and volumes, HOMO/LUMO energies, dipole moments, polarizabilities, and electrophilic and nucleophilic superdelocalizabilities. A multilinear regression model and a partial least squares model were used to train a set of 97 molecules. As well, descriptors were generated using the molecular operating environment and used to create additional machine learning models. Electronic structure vertical solvation approaches considered include DFT and the domain-based local pair natural orbital methods combined with the solvated variant of the correlation consistent composite approach.</description><identifier>ISSN: 0920-654X</identifier><identifier>ISSN: 1573-4951</identifier><identifier>EISSN: 1573-4951</identifier><identifier>DOI: 10.1007/s10822-020-00287-0</identifier><identifier>PMID: 32002780</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animal Anatomy ; Chemistry ; Chemistry and Materials Science ; Computer Applications in Chemistry ; Computer Simulation ; Density functional theory ; Dipole moments ; Electronic structure ; Histology ; Ligands ; Machine Learning ; Models, Chemical ; Molecular orbitals ; Morphology ; Physical Chemistry ; Quantum mechanics ; Quantum Theory ; Regression models ; Solvation ; Water - chemistry</subject><ispartof>Journal of computer-aided molecular design, 2020-05, Vol.34 (5), p.495-510</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-87dc890478ae82d38f3765e45f08e553357f6f05190c48b270f067d4a2877bfc3</citedby><cites>FETCH-LOGICAL-c375t-87dc890478ae82d38f3765e45f08e553357f6f05190c48b270f067d4a2877bfc3</cites><orcidid>0000-0001-9500-1628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10822-020-00287-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10822-020-00287-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32002780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Prajay</creatorcontrib><creatorcontrib>Kuntz, David M.</creatorcontrib><creatorcontrib>Jones, Michael R.</creatorcontrib><creatorcontrib>Brooks, Bernard R.</creatorcontrib><creatorcontrib>Wilson, Angela K.</creatorcontrib><title>SAMPL6 logP challenge: machine learning and quantum mechanical approaches</title><title>Journal of computer-aided molecular design</title><addtitle>J Comput Aided Mol Des</addtitle><addtitle>J Comput Aided Mol Des</addtitle><description>Two different types of approaches: (a) approaches that combine quantitative structure activity relationships, quantum mechanical electronic structure methods, and machine-learning and, (b) electronic structure vertical solvation approaches, were used to predict the log
P
coefficients of 11 molecules as part of the SAMPL6 log
P
blind prediction challenge. Using electronic structures optimized with density functional theory (DFT), several molecular descriptors were calculated for each molecule, including van der Waals areas and volumes, HOMO/LUMO energies, dipole moments, polarizabilities, and electrophilic and nucleophilic superdelocalizabilities. A multilinear regression model and a partial least squares model were used to train a set of 97 molecules. As well, descriptors were generated using the molecular operating environment and used to create additional machine learning models. Electronic structure vertical solvation approaches considered include DFT and the domain-based local pair natural orbital methods combined with the solvated variant of the correlation consistent composite approach.</description><subject>Animal Anatomy</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Applications in Chemistry</subject><subject>Computer Simulation</subject><subject>Density functional theory</subject><subject>Dipole moments</subject><subject>Electronic structure</subject><subject>Histology</subject><subject>Ligands</subject><subject>Machine Learning</subject><subject>Models, Chemical</subject><subject>Molecular orbitals</subject><subject>Morphology</subject><subject>Physical Chemistry</subject><subject>Quantum mechanics</subject><subject>Quantum Theory</subject><subject>Regression models</subject><subject>Solvation</subject><subject>Water - chemistry</subject><issn>0920-654X</issn><issn>1573-4951</issn><issn>1573-4951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAURS0EouXjDzAgSywsgWc7jh22quKjUhGVAInNch2nTZU4rd0M_HsMKSAxMHl4597ndxA6I3BFAMR1ICApTYBCAkClSGAPDQkXLElzTvbREPI4ynj6NkBHIawghvIMDtGA0RgQEoZo8jx6nE0zXLeLGTZLXdfWLewNbrRZVs7i2mrvKrfA2hV402m37Rrc2Ei6yuga6_Xat5G14QQdlLoO9nT3HqPXu9uX8UMyfbqfjEfTxDDBt4kUhZE5pEJqK2nBZMlExm3KS5CWc8a4KLMSOMnBpHJOBZSQiSLV8UAxLw07Rpd9b1y86WzYqqYKxta1drbtgqKMA-RMEB7Riz_oqu28i7-LlBSUSirSSNGeMr4NwdtSrX3VaP-uCKhP0aoXraJo9SVaQQyd76q7eWOLn8i32QiwHghxFJX6393_1H4AoIKF9w</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Patel, Prajay</creator><creator>Kuntz, David M.</creator><creator>Jones, Michael R.</creator><creator>Brooks, Bernard R.</creator><creator>Wilson, Angela K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9500-1628</orcidid></search><sort><creationdate>20200501</creationdate><title>SAMPL6 logP challenge: machine learning and quantum mechanical approaches</title><author>Patel, Prajay ; Kuntz, David M. ; Jones, Michael R. ; Brooks, Bernard R. ; Wilson, Angela K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-87dc890478ae82d38f3765e45f08e553357f6f05190c48b270f067d4a2877bfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Anatomy</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Applications in Chemistry</topic><topic>Computer Simulation</topic><topic>Density functional theory</topic><topic>Dipole moments</topic><topic>Electronic structure</topic><topic>Histology</topic><topic>Ligands</topic><topic>Machine Learning</topic><topic>Models, Chemical</topic><topic>Molecular orbitals</topic><topic>Morphology</topic><topic>Physical Chemistry</topic><topic>Quantum mechanics</topic><topic>Quantum Theory</topic><topic>Regression models</topic><topic>Solvation</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Prajay</creatorcontrib><creatorcontrib>Kuntz, David M.</creatorcontrib><creatorcontrib>Jones, Michael R.</creatorcontrib><creatorcontrib>Brooks, Bernard R.</creatorcontrib><creatorcontrib>Wilson, Angela K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computer-aided molecular design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Prajay</au><au>Kuntz, David M.</au><au>Jones, Michael R.</au><au>Brooks, Bernard R.</au><au>Wilson, Angela K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAMPL6 logP challenge: machine learning and quantum mechanical approaches</atitle><jtitle>Journal of computer-aided molecular design</jtitle><stitle>J Comput Aided Mol Des</stitle><addtitle>J Comput Aided Mol Des</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>34</volume><issue>5</issue><spage>495</spage><epage>510</epage><pages>495-510</pages><issn>0920-654X</issn><issn>1573-4951</issn><eissn>1573-4951</eissn><abstract>Two different types of approaches: (a) approaches that combine quantitative structure activity relationships, quantum mechanical electronic structure methods, and machine-learning and, (b) electronic structure vertical solvation approaches, were used to predict the log
P
coefficients of 11 molecules as part of the SAMPL6 log
P
blind prediction challenge. Using electronic structures optimized with density functional theory (DFT), several molecular descriptors were calculated for each molecule, including van der Waals areas and volumes, HOMO/LUMO energies, dipole moments, polarizabilities, and electrophilic and nucleophilic superdelocalizabilities. A multilinear regression model and a partial least squares model were used to train a set of 97 molecules. As well, descriptors were generated using the molecular operating environment and used to create additional machine learning models. Electronic structure vertical solvation approaches considered include DFT and the domain-based local pair natural orbital methods combined with the solvated variant of the correlation consistent composite approach.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32002780</pmid><doi>10.1007/s10822-020-00287-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9500-1628</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-654X |
ispartof | Journal of computer-aided molecular design, 2020-05, Vol.34 (5), p.495-510 |
issn | 0920-654X 1573-4951 1573-4951 |
language | eng |
recordid | cdi_proquest_miscellaneous_2350093715 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animal Anatomy Chemistry Chemistry and Materials Science Computer Applications in Chemistry Computer Simulation Density functional theory Dipole moments Electronic structure Histology Ligands Machine Learning Models, Chemical Molecular orbitals Morphology Physical Chemistry Quantum mechanics Quantum Theory Regression models Solvation Water - chemistry |
title | SAMPL6 logP challenge: machine learning and quantum mechanical approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAMPL6%20logP%20challenge:%20machine%20learning%20and%20quantum%20mechanical%20approaches&rft.jtitle=Journal%20of%20computer-aided%20molecular%20design&rft.au=Patel,%20Prajay&rft.date=2020-05-01&rft.volume=34&rft.issue=5&rft.spage=495&rft.epage=510&rft.pages=495-510&rft.issn=0920-654X&rft.eissn=1573-4951&rft_id=info:doi/10.1007/s10822-020-00287-0&rft_dat=%3Cproquest_cross%3E2387228274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387228274&rft_id=info:pmid/32002780&rfr_iscdi=true |