Carbon Nanolights in Piezopolymers are Self‐Organizing Toward Color Tunable Luminous Hybrids for Kinetic Energy Harvesting

Herein, an all‐solid‐state sequential self‐organization and self‐assembly process is reported for the in situ construction of a color tunable luminous inorganic/polymer hybrid with high direct piezoresponse. The primary inorganic self‐organization in solid polymer and the subsequent polymer self‐ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-02, Vol.16 (8), p.e1905703-n/a
Hauptverfasser: He, Xuebing, Wang, Chuanfeng, Huang, Xi, Jin, Long, Chu, Xiang, Xie, Meilin, Nie, Yiwen, Xu, Yali, Peng, Zhou, Zhang, Chaoliang, Lu, Jun, Yang, Weiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e1905703
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator He, Xuebing
Wang, Chuanfeng
Huang, Xi
Jin, Long
Chu, Xiang
Xie, Meilin
Nie, Yiwen
Xu, Yali
Peng, Zhou
Zhang, Chaoliang
Lu, Jun
Yang, Weiqing
description Herein, an all‐solid‐state sequential self‐organization and self‐assembly process is reported for the in situ construction of a color tunable luminous inorganic/polymer hybrid with high direct piezoresponse. The primary inorganic self‐organization in solid polymer and the subsequent polymer self‐assembly are achieved at high pressure with the first utilization of piezo‐copolymer (PVDF‐TrFE) as the host matrix of guest carbon quantum dots (CQDs). This process induces the spontaneous formation of a highly ordered, microscale, polygonal, and hierarchically structured CQDs/PVDF‐TrFE hybrid with multicolor photoluminescence, consisting of very thermodynamic stable polar crystalline nanowire arrays. The electrical polarization‐free CQDs/PVDF‐TrFE hybrids can efficiently harvest the environmental available kinetic mechanical energy with a new large‐scale group‐cooperation mechanism. The open‐circuit voltage and short‐circuit current outputs reach up to 29.6 V cm−2 and 550 nA cm−2, respectively. The CQDs/PVDF‐TrFE–based hybrid nanogenerator demonstrates drastically improved durable and reliable features during the real‐time demonstration of powering commercial light emitting diodes. No attenuation/fluctuation of the electrical signals is observed for ≈10 000 continuous working cycles. This study may offer a new design concept for progressively but spontaneously constructing novel multiple self‐adaptive complex inorganic/polymer hybrids that promise applications in the next generation of self‐powered autonomous optoelectronic devices. The sequential self‐organization and self‐assembly of carbon nanolights in solid piezopolymers, progressing from nano‐ to micro‐ to macroscale, lead to the spontaneous construction of a large number of highly ordered multicolor luminous nanogenerators with an increased degree of complexity. They work with a new large‐scale group‐cooperation mechanism to harvest kinetic mechanical energy, and demonstrate ultrahigh and superstable direct piezoresponses in long‐term operation.
doi_str_mv 10.1002/smll.201905703
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2350093678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350093678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-fa1ffa3e8742c13f70edff097fd0567503f6de9145f7019585ad2832fa2a58a73</originalsourceid><addsrcrecordid>eNqFkc9OGzEQhy3UqvxprxyRpV64JB3b2fXuEUXQVCxQifS8cnbHwchrBzsLWtQDj9Bn7JPUUWiQeulpRppvvhnpR8gxgzED4F9iZ-2YAyshkyD2yAHLmRjlBS_f7XoG--QwxnsAwfhEfiD7gm96URyQn1MVFt7Ra-W8Ncu7daTG0e8Gn_3K26HDEKkKSG_R6t8vv27CUjnzbNySzv2TCi2deusDnfdOLSzSqu-M832ks2ERTBupTsNL43BtGnruMCwHOlPhEeM6OT6S91rZiJ9e6xH5cXE-n85G1c3Xb9OzatQIKcRIK6a1EljICW-Y0BKw1RpKqVvIcpmB0HmLJZtkacTKrMhUywvBteIqK5QUR-R0610F_9Cn23VnYoPWKofp2ZqLDKAUuSwS-vkf9N73waXvEpXzvBQFbKjxlmqCjzGgrlfBdCoMNYN6k0u9yaXe5ZIWTl61_aLDdof_DSIB5RZ4MhaH_-jq26uqepP_AXaum_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2362693808</pqid></control><display><type>article</type><title>Carbon Nanolights in Piezopolymers are Self‐Organizing Toward Color Tunable Luminous Hybrids for Kinetic Energy Harvesting</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>He, Xuebing ; Wang, Chuanfeng ; Huang, Xi ; Jin, Long ; Chu, Xiang ; Xie, Meilin ; Nie, Yiwen ; Xu, Yali ; Peng, Zhou ; Zhang, Chaoliang ; Lu, Jun ; Yang, Weiqing</creator><creatorcontrib>He, Xuebing ; Wang, Chuanfeng ; Huang, Xi ; Jin, Long ; Chu, Xiang ; Xie, Meilin ; Nie, Yiwen ; Xu, Yali ; Peng, Zhou ; Zhang, Chaoliang ; Lu, Jun ; Yang, Weiqing</creatorcontrib><description>Herein, an all‐solid‐state sequential self‐organization and self‐assembly process is reported for the in situ construction of a color tunable luminous inorganic/polymer hybrid with high direct piezoresponse. The primary inorganic self‐organization in solid polymer and the subsequent polymer self‐assembly are achieved at high pressure with the first utilization of piezo‐copolymer (PVDF‐TrFE) as the host matrix of guest carbon quantum dots (CQDs). This process induces the spontaneous formation of a highly ordered, microscale, polygonal, and hierarchically structured CQDs/PVDF‐TrFE hybrid with multicolor photoluminescence, consisting of very thermodynamic stable polar crystalline nanowire arrays. The electrical polarization‐free CQDs/PVDF‐TrFE hybrids can efficiently harvest the environmental available kinetic mechanical energy with a new large‐scale group‐cooperation mechanism. The open‐circuit voltage and short‐circuit current outputs reach up to 29.6 V cm−2 and 550 nA cm−2, respectively. The CQDs/PVDF‐TrFE–based hybrid nanogenerator demonstrates drastically improved durable and reliable features during the real‐time demonstration of powering commercial light emitting diodes. No attenuation/fluctuation of the electrical signals is observed for ≈10 000 continuous working cycles. This study may offer a new design concept for progressively but spontaneously constructing novel multiple self‐adaptive complex inorganic/polymer hybrids that promise applications in the next generation of self‐powered autonomous optoelectronic devices. The sequential self‐organization and self‐assembly of carbon nanolights in solid piezopolymers, progressing from nano‐ to micro‐ to macroscale, lead to the spontaneous construction of a large number of highly ordered multicolor luminous nanogenerators with an increased degree of complexity. They work with a new large‐scale group‐cooperation mechanism to harvest kinetic mechanical energy, and demonstrate ultrahigh and superstable direct piezoresponses in long‐term operation.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201905703</identifier><identifier>PMID: 32003138</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Assembly ; Attenuation ; Carbon ; Circuits ; Color ; Electric power generation ; electro‐optical materials ; Energy harvesting ; Kinetic energy ; Nanogenerators ; Nanotechnology ; Nanowires ; Optoelectronic devices ; Organic light emitting diodes ; Photoluminescence ; Polymers ; Quantum dots ; self‐organization ; self‐powered nanosystems ; Variation</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-02, Vol.16 (8), p.e1905703-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-fa1ffa3e8742c13f70edff097fd0567503f6de9145f7019585ad2832fa2a58a73</citedby><cites>FETCH-LOGICAL-c3733-fa1ffa3e8742c13f70edff097fd0567503f6de9145f7019585ad2832fa2a58a73</cites><orcidid>0000-0002-0606-9565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201905703$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201905703$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32003138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Xuebing</creatorcontrib><creatorcontrib>Wang, Chuanfeng</creatorcontrib><creatorcontrib>Huang, Xi</creatorcontrib><creatorcontrib>Jin, Long</creatorcontrib><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Xie, Meilin</creatorcontrib><creatorcontrib>Nie, Yiwen</creatorcontrib><creatorcontrib>Xu, Yali</creatorcontrib><creatorcontrib>Peng, Zhou</creatorcontrib><creatorcontrib>Zhang, Chaoliang</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Yang, Weiqing</creatorcontrib><title>Carbon Nanolights in Piezopolymers are Self‐Organizing Toward Color Tunable Luminous Hybrids for Kinetic Energy Harvesting</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Herein, an all‐solid‐state sequential self‐organization and self‐assembly process is reported for the in situ construction of a color tunable luminous inorganic/polymer hybrid with high direct piezoresponse. The primary inorganic self‐organization in solid polymer and the subsequent polymer self‐assembly are achieved at high pressure with the first utilization of piezo‐copolymer (PVDF‐TrFE) as the host matrix of guest carbon quantum dots (CQDs). This process induces the spontaneous formation of a highly ordered, microscale, polygonal, and hierarchically structured CQDs/PVDF‐TrFE hybrid with multicolor photoluminescence, consisting of very thermodynamic stable polar crystalline nanowire arrays. The electrical polarization‐free CQDs/PVDF‐TrFE hybrids can efficiently harvest the environmental available kinetic mechanical energy with a new large‐scale group‐cooperation mechanism. The open‐circuit voltage and short‐circuit current outputs reach up to 29.6 V cm−2 and 550 nA cm−2, respectively. The CQDs/PVDF‐TrFE–based hybrid nanogenerator demonstrates drastically improved durable and reliable features during the real‐time demonstration of powering commercial light emitting diodes. No attenuation/fluctuation of the electrical signals is observed for ≈10 000 continuous working cycles. This study may offer a new design concept for progressively but spontaneously constructing novel multiple self‐adaptive complex inorganic/polymer hybrids that promise applications in the next generation of self‐powered autonomous optoelectronic devices. The sequential self‐organization and self‐assembly of carbon nanolights in solid piezopolymers, progressing from nano‐ to micro‐ to macroscale, lead to the spontaneous construction of a large number of highly ordered multicolor luminous nanogenerators with an increased degree of complexity. They work with a new large‐scale group‐cooperation mechanism to harvest kinetic mechanical energy, and demonstrate ultrahigh and superstable direct piezoresponses in long‐term operation.</description><subject>Assembly</subject><subject>Attenuation</subject><subject>Carbon</subject><subject>Circuits</subject><subject>Color</subject><subject>Electric power generation</subject><subject>electro‐optical materials</subject><subject>Energy harvesting</subject><subject>Kinetic energy</subject><subject>Nanogenerators</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Optoelectronic devices</subject><subject>Organic light emitting diodes</subject><subject>Photoluminescence</subject><subject>Polymers</subject><subject>Quantum dots</subject><subject>self‐organization</subject><subject>self‐powered nanosystems</subject><subject>Variation</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc9OGzEQhy3UqvxprxyRpV64JB3b2fXuEUXQVCxQifS8cnbHwchrBzsLWtQDj9Bn7JPUUWiQeulpRppvvhnpR8gxgzED4F9iZ-2YAyshkyD2yAHLmRjlBS_f7XoG--QwxnsAwfhEfiD7gm96URyQn1MVFt7Ra-W8Ncu7daTG0e8Gn_3K26HDEKkKSG_R6t8vv27CUjnzbNySzv2TCi2deusDnfdOLSzSqu-M832ks2ERTBupTsNL43BtGnruMCwHOlPhEeM6OT6S91rZiJ9e6xH5cXE-n85G1c3Xb9OzatQIKcRIK6a1EljICW-Y0BKw1RpKqVvIcpmB0HmLJZtkacTKrMhUywvBteIqK5QUR-R0610F_9Cn23VnYoPWKofp2ZqLDKAUuSwS-vkf9N73waXvEpXzvBQFbKjxlmqCjzGgrlfBdCoMNYN6k0u9yaXe5ZIWTl61_aLDdof_DSIB5RZ4MhaH_-jq26uqepP_AXaum_s</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>He, Xuebing</creator><creator>Wang, Chuanfeng</creator><creator>Huang, Xi</creator><creator>Jin, Long</creator><creator>Chu, Xiang</creator><creator>Xie, Meilin</creator><creator>Nie, Yiwen</creator><creator>Xu, Yali</creator><creator>Peng, Zhou</creator><creator>Zhang, Chaoliang</creator><creator>Lu, Jun</creator><creator>Yang, Weiqing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0606-9565</orcidid></search><sort><creationdate>20200201</creationdate><title>Carbon Nanolights in Piezopolymers are Self‐Organizing Toward Color Tunable Luminous Hybrids for Kinetic Energy Harvesting</title><author>He, Xuebing ; Wang, Chuanfeng ; Huang, Xi ; Jin, Long ; Chu, Xiang ; Xie, Meilin ; Nie, Yiwen ; Xu, Yali ; Peng, Zhou ; Zhang, Chaoliang ; Lu, Jun ; Yang, Weiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-fa1ffa3e8742c13f70edff097fd0567503f6de9145f7019585ad2832fa2a58a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Assembly</topic><topic>Attenuation</topic><topic>Carbon</topic><topic>Circuits</topic><topic>Color</topic><topic>Electric power generation</topic><topic>electro‐optical materials</topic><topic>Energy harvesting</topic><topic>Kinetic energy</topic><topic>Nanogenerators</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Optoelectronic devices</topic><topic>Organic light emitting diodes</topic><topic>Photoluminescence</topic><topic>Polymers</topic><topic>Quantum dots</topic><topic>self‐organization</topic><topic>self‐powered nanosystems</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xuebing</creatorcontrib><creatorcontrib>Wang, Chuanfeng</creatorcontrib><creatorcontrib>Huang, Xi</creatorcontrib><creatorcontrib>Jin, Long</creatorcontrib><creatorcontrib>Chu, Xiang</creatorcontrib><creatorcontrib>Xie, Meilin</creatorcontrib><creatorcontrib>Nie, Yiwen</creatorcontrib><creatorcontrib>Xu, Yali</creatorcontrib><creatorcontrib>Peng, Zhou</creatorcontrib><creatorcontrib>Zhang, Chaoliang</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><creatorcontrib>Yang, Weiqing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xuebing</au><au>Wang, Chuanfeng</au><au>Huang, Xi</au><au>Jin, Long</au><au>Chu, Xiang</au><au>Xie, Meilin</au><au>Nie, Yiwen</au><au>Xu, Yali</au><au>Peng, Zhou</au><au>Zhang, Chaoliang</au><au>Lu, Jun</au><au>Yang, Weiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanolights in Piezopolymers are Self‐Organizing Toward Color Tunable Luminous Hybrids for Kinetic Energy Harvesting</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>16</volume><issue>8</issue><spage>e1905703</spage><epage>n/a</epage><pages>e1905703-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Herein, an all‐solid‐state sequential self‐organization and self‐assembly process is reported for the in situ construction of a color tunable luminous inorganic/polymer hybrid with high direct piezoresponse. The primary inorganic self‐organization in solid polymer and the subsequent polymer self‐assembly are achieved at high pressure with the first utilization of piezo‐copolymer (PVDF‐TrFE) as the host matrix of guest carbon quantum dots (CQDs). This process induces the spontaneous formation of a highly ordered, microscale, polygonal, and hierarchically structured CQDs/PVDF‐TrFE hybrid with multicolor photoluminescence, consisting of very thermodynamic stable polar crystalline nanowire arrays. The electrical polarization‐free CQDs/PVDF‐TrFE hybrids can efficiently harvest the environmental available kinetic mechanical energy with a new large‐scale group‐cooperation mechanism. The open‐circuit voltage and short‐circuit current outputs reach up to 29.6 V cm−2 and 550 nA cm−2, respectively. The CQDs/PVDF‐TrFE–based hybrid nanogenerator demonstrates drastically improved durable and reliable features during the real‐time demonstration of powering commercial light emitting diodes. No attenuation/fluctuation of the electrical signals is observed for ≈10 000 continuous working cycles. This study may offer a new design concept for progressively but spontaneously constructing novel multiple self‐adaptive complex inorganic/polymer hybrids that promise applications in the next generation of self‐powered autonomous optoelectronic devices. The sequential self‐organization and self‐assembly of carbon nanolights in solid piezopolymers, progressing from nano‐ to micro‐ to macroscale, lead to the spontaneous construction of a large number of highly ordered multicolor luminous nanogenerators with an increased degree of complexity. They work with a new large‐scale group‐cooperation mechanism to harvest kinetic mechanical energy, and demonstrate ultrahigh and superstable direct piezoresponses in long‐term operation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32003138</pmid><doi>10.1002/smll.201905703</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0606-9565</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-02, Vol.16 (8), p.e1905703-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2350093678
source Wiley Online Library Journals Frontfile Complete
subjects Assembly
Attenuation
Carbon
Circuits
Color
Electric power generation
electro‐optical materials
Energy harvesting
Kinetic energy
Nanogenerators
Nanotechnology
Nanowires
Optoelectronic devices
Organic light emitting diodes
Photoluminescence
Polymers
Quantum dots
self‐organization
self‐powered nanosystems
Variation
title Carbon Nanolights in Piezopolymers are Self‐Organizing Toward Color Tunable Luminous Hybrids for Kinetic Energy Harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanolights%20in%20Piezopolymers%20are%20Self%E2%80%90Organizing%20Toward%20Color%20Tunable%20Luminous%20Hybrids%20for%20Kinetic%20Energy%20Harvesting&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=He,%20Xuebing&rft.date=2020-02-01&rft.volume=16&rft.issue=8&rft.spage=e1905703&rft.epage=n/a&rft.pages=e1905703-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201905703&rft_dat=%3Cproquest_cross%3E2350093678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2362693808&rft_id=info:pmid/32003138&rfr_iscdi=true