The roles of genes associated with regulation, transportation, and macrocyclization in desotamide biosynthesis in Streptomyces scopuliridis SCSIO ZJ46
The deep-sea-derived microbe Streptomyces scopuliridis SCSIO ZJ46 produces desotamides A–D. Notably, desotamides A and B display antibacterial activities against pathogenic Gram-positive Streptococcus pneumoniae NCTC 7466, Staphylococcus aureus ATCC 29213, and the methicillin-resistant clinical isol...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2020-03, Vol.104 (6), p.2603-2610 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2610 |
---|---|
container_issue | 6 |
container_start_page | 2603 |
container_title | Applied microbiology and biotechnology |
container_volume | 104 |
creator | Ding, Wenjuan Dong, Yuliang Ju, Jianhua Li, Qinglian |
description | The deep-sea-derived microbe
Streptomyces scopuliridis
SCSIO ZJ46 produces desotamides A–D. Notably, desotamides A and B display antibacterial activities against pathogenic Gram-positive
Streptococcus pneumoniae
NCTC 7466,
Staphylococcus aureus
ATCC 29213, and the methicillin-resistant clinical isolate
Staphylococcus epidermidis
(MRSE) shhs-E1. The 39-kb desotamide biosynthetic gene cluster (
dsa
) has previously been identified and heterologously expressed in
S. coelicolor
M1152 for the purposes of assigning
dsa
gene functions. In this work, we identified seven genes in the
dsa
cluster including three regulatory genes (
dsaA
,
dsaM
,
and dsaN
), two transporter genes (
dsaK and dsaL
), and two other genes,
dsaB
(annotated as a phosphate synthase) and
dsaJ
(a PBP-type thioesterase)
.
The DsaA and DsaN were unambiguously shown to be positive regulators of desotamide biosynthesis, and consistent with these roles, inactivation of either gene completely abolished desotamide production. Moreover, overexpression of
dsaA
or
dsaN
(independent of each other) was shown to improve desotamide titers. Production of desotamides in M1152/07-6H::
dsaA
strain was 2.4-fold greater than that in the heterologous
dsa
expression strain M1152/07-6H whereas desotamide titers from the M1152/07-6H::
dsaN
strain were about twice that of M1152/07-6H. In addition, inactivation of
dsaB
and
dsaJ
(independent of each other) completely abolished desotamide production, indicating their indispensability for desotamide assembly. These studies provide new insights into the functions and combinatorial biosynthetic potentials of seven key genes within the
dsa
biosynthetic gene cluster. Findings reported here are likely to facilitate further efforts aimed at assessing and developing the desotamides and related analogs for future applications. |
doi_str_mv | 10.1007/s00253-020-10414-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2350093624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615423971</galeid><sourcerecordid>A615423971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-2b77aa9394be53d6268bda50bd820e305a4bc37ce3790cedfbaff281c668f0fe3</originalsourceid><addsrcrecordid>eNp9ks9uEzEQxlcIREPhBTggS1yKxBb_W-_usYoKBFWqRMqFi-W1ZxNXu3awvYL0QXhenCZQBSHkg-2Z3zf22F9RvCT4nGBcv4sY04qVmOKSYE54yR8VM8IZLbEg_HExw6Suyrpqm5PiWYy3GBPaCPG0OGE0SwWuZsXPmzWg4AeIyPdoBS4vVIxeW5XAoO82rVGA1TSoZL17i1JQLm58SIe9cgaNSgevt3qwd_dRZB0yEH1SozWAOuvj1qU1RBt3qWUKsEl-3Op8VtR-Mw02WJOTy_lycY2-fuLiefGkV0OEF4f5tPjy_vJm_rG8uv6wmF9clboiLJW0q2ulWtbyDipmBBVNZ1SFO9NQDAxXinea1RpY3WINpu9U39OGaCGaHvfATouzfd1N8N8miEmONmoYBuXAT1FSVmHcMkF5Rl__hd76Kbh8u0wJ3lJKSP1ArdQA0rre5xfTu6LyQpCKU9bWJFPn_6DyMDBa7R30NsePBG-OBJlJ8COt1BSjXCw_H7N0z-ZfiTFALzfBjipsJcFyZxy5N47MxpH3xpG77l4dupu6EcwfyW-nZIDtgZhTbgXhof3_lP0F8R7OSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2364922117</pqid></control><display><type>article</type><title>The roles of genes associated with regulation, transportation, and macrocyclization in desotamide biosynthesis in Streptomyces scopuliridis SCSIO ZJ46</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ding, Wenjuan ; Dong, Yuliang ; Ju, Jianhua ; Li, Qinglian</creator><creatorcontrib>Ding, Wenjuan ; Dong, Yuliang ; Ju, Jianhua ; Li, Qinglian</creatorcontrib><description>The deep-sea-derived microbe
Streptomyces scopuliridis
SCSIO ZJ46 produces desotamides A–D. Notably, desotamides A and B display antibacterial activities against pathogenic Gram-positive
Streptococcus pneumoniae
NCTC 7466,
Staphylococcus aureus
ATCC 29213, and the methicillin-resistant clinical isolate
Staphylococcus epidermidis
(MRSE) shhs-E1. The 39-kb desotamide biosynthetic gene cluster (
dsa
) has previously been identified and heterologously expressed in
S. coelicolor
M1152 for the purposes of assigning
dsa
gene functions. In this work, we identified seven genes in the
dsa
cluster including three regulatory genes (
dsaA
,
dsaM
,
and dsaN
), two transporter genes (
dsaK and dsaL
), and two other genes,
dsaB
(annotated as a phosphate synthase) and
dsaJ
(a PBP-type thioesterase)
.
The DsaA and DsaN were unambiguously shown to be positive regulators of desotamide biosynthesis, and consistent with these roles, inactivation of either gene completely abolished desotamide production. Moreover, overexpression of
dsaA
or
dsaN
(independent of each other) was shown to improve desotamide titers. Production of desotamides in M1152/07-6H::
dsaA
strain was 2.4-fold greater than that in the heterologous
dsa
expression strain M1152/07-6H whereas desotamide titers from the M1152/07-6H::
dsaN
strain were about twice that of M1152/07-6H. In addition, inactivation of
dsaB
and
dsaJ
(independent of each other) completely abolished desotamide production, indicating their indispensability for desotamide assembly. These studies provide new insights into the functions and combinatorial biosynthetic potentials of seven key genes within the
dsa
biosynthetic gene cluster. Findings reported here are likely to facilitate further efforts aimed at assessing and developing the desotamides and related analogs for future applications.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-020-10414-4</identifier><identifier>PMID: 32002605</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied Genetics and Molecular Biotechnology ; Bacterial pneumonia ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Combinatorial analysis ; Deactivation ; Deep sea ; Drug resistance ; Gene expression ; Gene regulation ; Genes ; Genetic aspects ; Genetic research ; Inactivation ; Life Sciences ; Methicillin ; Microbial Genetics and Genomics ; Microbiology ; Phosphates ; Physiological aspects ; Pneumonia ; Streptococcus infections ; Streptomyces ; Thioesterase ; Transportation policy</subject><ispartof>Applied microbiology and biotechnology, 2020-03, Vol.104 (6), p.2603-2610</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Applied Microbiology and Biotechnology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-2b77aa9394be53d6268bda50bd820e305a4bc37ce3790cedfbaff281c668f0fe3</citedby><cites>FETCH-LOGICAL-c513t-2b77aa9394be53d6268bda50bd820e305a4bc37ce3790cedfbaff281c668f0fe3</cites><orcidid>0000-0001-7712-8027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-020-10414-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-020-10414-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32002605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Wenjuan</creatorcontrib><creatorcontrib>Dong, Yuliang</creatorcontrib><creatorcontrib>Ju, Jianhua</creatorcontrib><creatorcontrib>Li, Qinglian</creatorcontrib><title>The roles of genes associated with regulation, transportation, and macrocyclization in desotamide biosynthesis in Streptomyces scopuliridis SCSIO ZJ46</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The deep-sea-derived microbe
Streptomyces scopuliridis
SCSIO ZJ46 produces desotamides A–D. Notably, desotamides A and B display antibacterial activities against pathogenic Gram-positive
Streptococcus pneumoniae
NCTC 7466,
Staphylococcus aureus
ATCC 29213, and the methicillin-resistant clinical isolate
Staphylococcus epidermidis
(MRSE) shhs-E1. The 39-kb desotamide biosynthetic gene cluster (
dsa
) has previously been identified and heterologously expressed in
S. coelicolor
M1152 for the purposes of assigning
dsa
gene functions. In this work, we identified seven genes in the
dsa
cluster including three regulatory genes (
dsaA
,
dsaM
,
and dsaN
), two transporter genes (
dsaK and dsaL
), and two other genes,
dsaB
(annotated as a phosphate synthase) and
dsaJ
(a PBP-type thioesterase)
.
The DsaA and DsaN were unambiguously shown to be positive regulators of desotamide biosynthesis, and consistent with these roles, inactivation of either gene completely abolished desotamide production. Moreover, overexpression of
dsaA
or
dsaN
(independent of each other) was shown to improve desotamide titers. Production of desotamides in M1152/07-6H::
dsaA
strain was 2.4-fold greater than that in the heterologous
dsa
expression strain M1152/07-6H whereas desotamide titers from the M1152/07-6H::
dsaN
strain were about twice that of M1152/07-6H. In addition, inactivation of
dsaB
and
dsaJ
(independent of each other) completely abolished desotamide production, indicating their indispensability for desotamide assembly. These studies provide new insights into the functions and combinatorial biosynthetic potentials of seven key genes within the
dsa
biosynthetic gene cluster. Findings reported here are likely to facilitate further efforts aimed at assessing and developing the desotamides and related analogs for future applications.</description><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Bacterial pneumonia</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Combinatorial analysis</subject><subject>Deactivation</subject><subject>Deep sea</subject><subject>Drug resistance</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Inactivation</subject><subject>Life Sciences</subject><subject>Methicillin</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Phosphates</subject><subject>Physiological aspects</subject><subject>Pneumonia</subject><subject>Streptococcus infections</subject><subject>Streptomyces</subject><subject>Thioesterase</subject><subject>Transportation policy</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ks9uEzEQxlcIREPhBTggS1yKxBb_W-_usYoKBFWqRMqFi-W1ZxNXu3awvYL0QXhenCZQBSHkg-2Z3zf22F9RvCT4nGBcv4sY04qVmOKSYE54yR8VM8IZLbEg_HExw6Suyrpqm5PiWYy3GBPaCPG0OGE0SwWuZsXPmzWg4AeIyPdoBS4vVIxeW5XAoO82rVGA1TSoZL17i1JQLm58SIe9cgaNSgevt3qwd_dRZB0yEH1SozWAOuvj1qU1RBt3qWUKsEl-3Op8VtR-Mw02WJOTy_lycY2-fuLiefGkV0OEF4f5tPjy_vJm_rG8uv6wmF9clboiLJW0q2ulWtbyDipmBBVNZ1SFO9NQDAxXinea1RpY3WINpu9U39OGaCGaHvfATouzfd1N8N8miEmONmoYBuXAT1FSVmHcMkF5Rl__hd76Kbh8u0wJ3lJKSP1ArdQA0rre5xfTu6LyQpCKU9bWJFPn_6DyMDBa7R30NsePBG-OBJlJ8COt1BSjXCw_H7N0z-ZfiTFALzfBjipsJcFyZxy5N47MxpH3xpG77l4dupu6EcwfyW-nZIDtgZhTbgXhof3_lP0F8R7OSg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ding, Wenjuan</creator><creator>Dong, Yuliang</creator><creator>Ju, Jianhua</creator><creator>Li, Qinglian</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7712-8027</orcidid></search><sort><creationdate>20200301</creationdate><title>The roles of genes associated with regulation, transportation, and macrocyclization in desotamide biosynthesis in Streptomyces scopuliridis SCSIO ZJ46</title><author>Ding, Wenjuan ; Dong, Yuliang ; Ju, Jianhua ; Li, Qinglian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-2b77aa9394be53d6268bda50bd820e305a4bc37ce3790cedfbaff281c668f0fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Bacterial pneumonia</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Combinatorial analysis</topic><topic>Deactivation</topic><topic>Deep sea</topic><topic>Drug resistance</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Inactivation</topic><topic>Life Sciences</topic><topic>Methicillin</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Phosphates</topic><topic>Physiological aspects</topic><topic>Pneumonia</topic><topic>Streptococcus infections</topic><topic>Streptomyces</topic><topic>Thioesterase</topic><topic>Transportation policy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Wenjuan</creatorcontrib><creatorcontrib>Dong, Yuliang</creatorcontrib><creatorcontrib>Ju, Jianhua</creatorcontrib><creatorcontrib>Li, Qinglian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Wenjuan</au><au>Dong, Yuliang</au><au>Ju, Jianhua</au><au>Li, Qinglian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The roles of genes associated with regulation, transportation, and macrocyclization in desotamide biosynthesis in Streptomyces scopuliridis SCSIO ZJ46</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>104</volume><issue>6</issue><spage>2603</spage><epage>2610</epage><pages>2603-2610</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>The deep-sea-derived microbe
Streptomyces scopuliridis
SCSIO ZJ46 produces desotamides A–D. Notably, desotamides A and B display antibacterial activities against pathogenic Gram-positive
Streptococcus pneumoniae
NCTC 7466,
Staphylococcus aureus
ATCC 29213, and the methicillin-resistant clinical isolate
Staphylococcus epidermidis
(MRSE) shhs-E1. The 39-kb desotamide biosynthetic gene cluster (
dsa
) has previously been identified and heterologously expressed in
S. coelicolor
M1152 for the purposes of assigning
dsa
gene functions. In this work, we identified seven genes in the
dsa
cluster including three regulatory genes (
dsaA
,
dsaM
,
and dsaN
), two transporter genes (
dsaK and dsaL
), and two other genes,
dsaB
(annotated as a phosphate synthase) and
dsaJ
(a PBP-type thioesterase)
.
The DsaA and DsaN were unambiguously shown to be positive regulators of desotamide biosynthesis, and consistent with these roles, inactivation of either gene completely abolished desotamide production. Moreover, overexpression of
dsaA
or
dsaN
(independent of each other) was shown to improve desotamide titers. Production of desotamides in M1152/07-6H::
dsaA
strain was 2.4-fold greater than that in the heterologous
dsa
expression strain M1152/07-6H whereas desotamide titers from the M1152/07-6H::
dsaN
strain were about twice that of M1152/07-6H. In addition, inactivation of
dsaB
and
dsaJ
(independent of each other) completely abolished desotamide production, indicating their indispensability for desotamide assembly. These studies provide new insights into the functions and combinatorial biosynthetic potentials of seven key genes within the
dsa
biosynthetic gene cluster. Findings reported here are likely to facilitate further efforts aimed at assessing and developing the desotamides and related analogs for future applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32002605</pmid><doi>10.1007/s00253-020-10414-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7712-8027</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2020-03, Vol.104 (6), p.2603-2610 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2350093624 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied Genetics and Molecular Biotechnology Bacterial pneumonia Biomedical and Life Sciences Biosynthesis Biotechnology Combinatorial analysis Deactivation Deep sea Drug resistance Gene expression Gene regulation Genes Genetic aspects Genetic research Inactivation Life Sciences Methicillin Microbial Genetics and Genomics Microbiology Phosphates Physiological aspects Pneumonia Streptococcus infections Streptomyces Thioesterase Transportation policy |
title | The roles of genes associated with regulation, transportation, and macrocyclization in desotamide biosynthesis in Streptomyces scopuliridis SCSIO ZJ46 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20roles%20of%20genes%20associated%20with%20regulation,%20transportation,%20and%20macrocyclization%20in%20desotamide%20biosynthesis%20in%20Streptomyces%20scopuliridis%20SCSIO%20ZJ46&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Ding,%20Wenjuan&rft.date=2020-03-01&rft.volume=104&rft.issue=6&rft.spage=2603&rft.epage=2610&rft.pages=2603-2610&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-020-10414-4&rft_dat=%3Cgale_proqu%3EA615423971%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2364922117&rft_id=info:pmid/32002605&rft_galeid=A615423971&rfr_iscdi=true |