The influence of diet on the microbiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture
ABSTRACT Live-feed is indispensable to commercial fish larviculture. However, high bacterial loads in rotifers could pose a biosecurity risk. While this may be true, live-feed associated bacteria could also be beneficial to fish larvae through improved feed utilization or pathogen inhibition followi...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology letters 2020-01, Vol.367 (2), p.1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | FEMS microbiology letters |
container_volume | 367 |
creator | Turgay, Emre Steinum, Terje Marken Eryalçın, Kamil Mert Yardımcı, Remziye Eda Karataş, Süheyla |
description | ABSTRACT
Live-feed is indispensable to commercial fish larviculture. However, high bacterial loads in rotifers could pose a biosecurity risk. While this may be true, live-feed associated bacteria could also be beneficial to fish larvae through improved feed utilization or pathogen inhibition following host microbiota modification. The study objective was to elucidate the largely unexplored microbiota of rotifers propagated on five different diets through bacterial community profiling by 16S rRNA gene amplicon sequencing. Investigated rotifer samples had a median observed alpha-diversity of 338 ± 87 bacterial species. Alpha- and Gamma-Proteobacteria dominated the rotifer microbiota followed by members of classes Flavobacteriia, Cytophagia, Mollicutes, Phycisphaerae and Bacteroidia. Different diets significantly altered the bacterial communities associated with rotifers according to PERMANOVA test results and beta dispersion calculations. A common core rotifer microbiome included 31 bacterial species present in relative abundances over 0.01%. We discuss the functional role of some microbiome members. Our data suggested the presence of several known fish pathogens in stock rotifers. However, we found no evidence for increased loads of these presumptive taxa in propagated live-feed rotifers during this field trial.
Live-feed rotifers (Brachionus plicatilis), propagated for use in commercial fish larviculture, share a core microbiome comprising thirty-one bacterial species despite significant variation in community structures between dietary regimes. |
doi_str_mv | 10.1093/femsle/fnaa020 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2350093406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A690773536</galeid><oup_id>10.1093/femsle/fnaa020</oup_id><sourcerecordid>A690773536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-6cc6d37ca145fb82c39e6f3cc8bbec3a3224fd464be540e9a932ae2eff9d342a3</originalsourceid><addsrcrecordid>eNqFkc1LHTEUxUNRqrXddikBN7oYzSSZzJulFVsFwY2uQyZz0xfJJM98CPavN4_3bIsIche55P7u4XIOQt9bctqSgZ0ZmJODM-OVIpR8Qvtt1_NGDGKx81-_h76k9EAI4ZSIz2iPUUK6YdHvoz93S8DWG1fAa8DB4MlCxsHjXAez1TGMNmS1njj7BI0BmHAM2RqICR__iEovbfAl4ZWzWmXrbDrBJVXKeqzDPEPUVjlsbFpip-KT1cXlEuEr2jXKJfi2fQ_Q_c_Lu4ur5ub21_XF-U2jOeW5EVqLifVatbwz44JqNoAwTOvFOIJmilHKzcQFH6HjBAY1MKqAgjHDxDhV7AAdb3RXMTwWSFnONmlwTnkIJUnKOlKt5ERU9OgN-hBK9PU6STkhrBVCsH_Ub-VAVvNCri6sReW5GEjfs46ttU7foWpNUG0NHoyt_-8tVM9TimDkKtpZxWfZErkOW27Cltuw68Lh9toyzjD9xV_TrcDJBghl9ZHYC2pPtd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400316663</pqid></control><display><type>article</type><title>The influence of diet on the microbiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Turgay, Emre ; Steinum, Terje Marken ; Eryalçın, Kamil Mert ; Yardımcı, Remziye Eda ; Karataş, Süheyla</creator><creatorcontrib>Turgay, Emre ; Steinum, Terje Marken ; Eryalçın, Kamil Mert ; Yardımcı, Remziye Eda ; Karataş, Süheyla</creatorcontrib><description>ABSTRACT
Live-feed is indispensable to commercial fish larviculture. However, high bacterial loads in rotifers could pose a biosecurity risk. While this may be true, live-feed associated bacteria could also be beneficial to fish larvae through improved feed utilization or pathogen inhibition following host microbiota modification. The study objective was to elucidate the largely unexplored microbiota of rotifers propagated on five different diets through bacterial community profiling by 16S rRNA gene amplicon sequencing. Investigated rotifer samples had a median observed alpha-diversity of 338 ± 87 bacterial species. Alpha- and Gamma-Proteobacteria dominated the rotifer microbiota followed by members of classes Flavobacteriia, Cytophagia, Mollicutes, Phycisphaerae and Bacteroidia. Different diets significantly altered the bacterial communities associated with rotifers according to PERMANOVA test results and beta dispersion calculations. A common core rotifer microbiome included 31 bacterial species present in relative abundances over 0.01%. We discuss the functional role of some microbiome members. Our data suggested the presence of several known fish pathogens in stock rotifers. However, we found no evidence for increased loads of these presumptive taxa in propagated live-feed rotifers during this field trial.
Live-feed rotifers (Brachionus plicatilis), propagated for use in commercial fish larviculture, share a core microbiome comprising thirty-one bacterial species despite significant variation in community structures between dietary regimes.</description><identifier>ISSN: 1574-6968</identifier><identifier>ISSN: 0378-1097</identifier><identifier>EISSN: 1574-6968</identifier><identifier>DOI: 10.1093/femsle/fnaa020</identifier><identifier>PMID: 32005987</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animal Feed - analysis ; Animals ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation & purification ; Biosecurity ; Diet ; Diet - veterinary ; Feed conversion ; Feeds ; Fish ; Fishes ; Fishes - growth & development ; Fishes - metabolism ; Gene sequencing ; Larva - growth & development ; Larva - metabolism ; Larvae ; Microbiology ; Microbiomes ; Microbiota ; Microbiota (Symbiotic organisms) ; Pathogens ; Physiological aspects ; Rotifera ; Rotifera - metabolism ; Rotifera - microbiology ; rRNA 16S</subject><ispartof>FEMS microbiology letters, 2020-01, Vol.367 (2), p.1</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of FEMS. 2020</rights><rights>FEMS 2020.</rights><rights>COPYRIGHT 2020 Oxford University Press</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of FEMS.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-6cc6d37ca145fb82c39e6f3cc8bbec3a3224fd464be540e9a932ae2eff9d342a3</citedby><cites>FETCH-LOGICAL-c424t-6cc6d37ca145fb82c39e6f3cc8bbec3a3224fd464be540e9a932ae2eff9d342a3</cites><orcidid>0000-0001-9964-3919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1579,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32005987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turgay, Emre</creatorcontrib><creatorcontrib>Steinum, Terje Marken</creatorcontrib><creatorcontrib>Eryalçın, Kamil Mert</creatorcontrib><creatorcontrib>Yardımcı, Remziye Eda</creatorcontrib><creatorcontrib>Karataş, Süheyla</creatorcontrib><title>The influence of diet on the microbiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture</title><title>FEMS microbiology letters</title><addtitle>FEMS Microbiol Lett</addtitle><description>ABSTRACT
Live-feed is indispensable to commercial fish larviculture. However, high bacterial loads in rotifers could pose a biosecurity risk. While this may be true, live-feed associated bacteria could also be beneficial to fish larvae through improved feed utilization or pathogen inhibition following host microbiota modification. The study objective was to elucidate the largely unexplored microbiota of rotifers propagated on five different diets through bacterial community profiling by 16S rRNA gene amplicon sequencing. Investigated rotifer samples had a median observed alpha-diversity of 338 ± 87 bacterial species. Alpha- and Gamma-Proteobacteria dominated the rotifer microbiota followed by members of classes Flavobacteriia, Cytophagia, Mollicutes, Phycisphaerae and Bacteroidia. Different diets significantly altered the bacterial communities associated with rotifers according to PERMANOVA test results and beta dispersion calculations. A common core rotifer microbiome included 31 bacterial species present in relative abundances over 0.01%. We discuss the functional role of some microbiome members. Our data suggested the presence of several known fish pathogens in stock rotifers. However, we found no evidence for increased loads of these presumptive taxa in propagated live-feed rotifers during this field trial.
Live-feed rotifers (Brachionus plicatilis), propagated for use in commercial fish larviculture, share a core microbiome comprising thirty-one bacterial species despite significant variation in community structures between dietary regimes.</description><subject>Animal Feed - analysis</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Biosecurity</subject><subject>Diet</subject><subject>Diet - veterinary</subject><subject>Feed conversion</subject><subject>Feeds</subject><subject>Fish</subject><subject>Fishes</subject><subject>Fishes - growth & development</subject><subject>Fishes - metabolism</subject><subject>Gene sequencing</subject><subject>Larva - growth & development</subject><subject>Larva - metabolism</subject><subject>Larvae</subject><subject>Microbiology</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Pathogens</subject><subject>Physiological aspects</subject><subject>Rotifera</subject><subject>Rotifera - metabolism</subject><subject>Rotifera - microbiology</subject><subject>rRNA 16S</subject><issn>1574-6968</issn><issn>0378-1097</issn><issn>1574-6968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1LHTEUxUNRqrXddikBN7oYzSSZzJulFVsFwY2uQyZz0xfJJM98CPavN4_3bIsIche55P7u4XIOQt9bctqSgZ0ZmJODM-OVIpR8Qvtt1_NGDGKx81-_h76k9EAI4ZSIz2iPUUK6YdHvoz93S8DWG1fAa8DB4MlCxsHjXAez1TGMNmS1njj7BI0BmHAM2RqICR__iEovbfAl4ZWzWmXrbDrBJVXKeqzDPEPUVjlsbFpip-KT1cXlEuEr2jXKJfi2fQ_Q_c_Lu4ur5ub21_XF-U2jOeW5EVqLifVatbwz44JqNoAwTOvFOIJmilHKzcQFH6HjBAY1MKqAgjHDxDhV7AAdb3RXMTwWSFnONmlwTnkIJUnKOlKt5ERU9OgN-hBK9PU6STkhrBVCsH_Ub-VAVvNCri6sReW5GEjfs46ttU7foWpNUG0NHoyt_-8tVM9TimDkKtpZxWfZErkOW27Cltuw68Lh9toyzjD9xV_TrcDJBghl9ZHYC2pPtd4</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Turgay, Emre</creator><creator>Steinum, Terje Marken</creator><creator>Eryalçın, Kamil Mert</creator><creator>Yardımcı, Remziye Eda</creator><creator>Karataş, Süheyla</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9964-3919</orcidid></search><sort><creationdate>20200101</creationdate><title>The influence of diet on the microbiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture</title><author>Turgay, Emre ; Steinum, Terje Marken ; Eryalçın, Kamil Mert ; Yardımcı, Remziye Eda ; Karataş, Süheyla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-6cc6d37ca145fb82c39e6f3cc8bbec3a3224fd464be540e9a932ae2eff9d342a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Feed - analysis</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Biosecurity</topic><topic>Diet</topic><topic>Diet - veterinary</topic><topic>Feed conversion</topic><topic>Feeds</topic><topic>Fish</topic><topic>Fishes</topic><topic>Fishes - growth & development</topic><topic>Fishes - metabolism</topic><topic>Gene sequencing</topic><topic>Larva - growth & development</topic><topic>Larva - metabolism</topic><topic>Larvae</topic><topic>Microbiology</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Pathogens</topic><topic>Physiological aspects</topic><topic>Rotifera</topic><topic>Rotifera - metabolism</topic><topic>Rotifera - microbiology</topic><topic>rRNA 16S</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turgay, Emre</creatorcontrib><creatorcontrib>Steinum, Terje Marken</creatorcontrib><creatorcontrib>Eryalçın, Kamil Mert</creatorcontrib><creatorcontrib>Yardımcı, Remziye Eda</creatorcontrib><creatorcontrib>Karataş, Süheyla</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turgay, Emre</au><au>Steinum, Terje Marken</au><au>Eryalçın, Kamil Mert</au><au>Yardımcı, Remziye Eda</au><au>Karataş, Süheyla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of diet on the microbiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture</atitle><jtitle>FEMS microbiology letters</jtitle><addtitle>FEMS Microbiol Lett</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>367</volume><issue>2</issue><spage>1</spage><pages>1-</pages><issn>1574-6968</issn><issn>0378-1097</issn><eissn>1574-6968</eissn><abstract>ABSTRACT
Live-feed is indispensable to commercial fish larviculture. However, high bacterial loads in rotifers could pose a biosecurity risk. While this may be true, live-feed associated bacteria could also be beneficial to fish larvae through improved feed utilization or pathogen inhibition following host microbiota modification. The study objective was to elucidate the largely unexplored microbiota of rotifers propagated on five different diets through bacterial community profiling by 16S rRNA gene amplicon sequencing. Investigated rotifer samples had a median observed alpha-diversity of 338 ± 87 bacterial species. Alpha- and Gamma-Proteobacteria dominated the rotifer microbiota followed by members of classes Flavobacteriia, Cytophagia, Mollicutes, Phycisphaerae and Bacteroidia. Different diets significantly altered the bacterial communities associated with rotifers according to PERMANOVA test results and beta dispersion calculations. A common core rotifer microbiome included 31 bacterial species present in relative abundances over 0.01%. We discuss the functional role of some microbiome members. Our data suggested the presence of several known fish pathogens in stock rotifers. However, we found no evidence for increased loads of these presumptive taxa in propagated live-feed rotifers during this field trial.
Live-feed rotifers (Brachionus plicatilis), propagated for use in commercial fish larviculture, share a core microbiome comprising thirty-one bacterial species despite significant variation in community structures between dietary regimes.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32005987</pmid><doi>10.1093/femsle/fnaa020</doi><orcidid>https://orcid.org/0000-0001-9964-3919</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-6968 |
ispartof | FEMS microbiology letters, 2020-01, Vol.367 (2), p.1 |
issn | 1574-6968 0378-1097 1574-6968 |
language | eng |
recordid | cdi_proquest_miscellaneous_2350093406 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Animal Feed - analysis Animals Bacteria Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Biosecurity Diet Diet - veterinary Feed conversion Feeds Fish Fishes Fishes - growth & development Fishes - metabolism Gene sequencing Larva - growth & development Larva - metabolism Larvae Microbiology Microbiomes Microbiota Microbiota (Symbiotic organisms) Pathogens Physiological aspects Rotifera Rotifera - metabolism Rotifera - microbiology rRNA 16S |
title | The influence of diet on the microbiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20diet%20on%20the%20microbiota%20of%20live-feed%20rotifers%20(Brachionus%20plicatilis)%20used%20in%20commercial%20fish%20larviculture&rft.jtitle=FEMS%20microbiology%20letters&rft.au=Turgay,%20Emre&rft.date=2020-01-01&rft.volume=367&rft.issue=2&rft.spage=1&rft.pages=1-&rft.issn=1574-6968&rft.eissn=1574-6968&rft_id=info:doi/10.1093/femsle/fnaa020&rft_dat=%3Cgale_proqu%3EA690773536%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400316663&rft_id=info:pmid/32005987&rft_galeid=A690773536&rft_oup_id=10.1093/femsle/fnaa020&rfr_iscdi=true |