The influence of diet on the microbiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture

ABSTRACT Live-feed is indispensable to commercial fish larviculture. However, high bacterial loads in rotifers could pose a biosecurity risk. While this may be true, live-feed associated bacteria could also be beneficial to fish larvae through improved feed utilization or pathogen inhibition followi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology letters 2020-01, Vol.367 (2), p.1
Hauptverfasser: Turgay, Emre, Steinum, Terje Marken, Eryalçın, Kamil Mert, Yardımcı, Remziye Eda, Karataş, Süheyla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 1
container_title FEMS microbiology letters
container_volume 367
creator Turgay, Emre
Steinum, Terje Marken
Eryalçın, Kamil Mert
Yardımcı, Remziye Eda
Karataş, Süheyla
description ABSTRACT Live-feed is indispensable to commercial fish larviculture. However, high bacterial loads in rotifers could pose a biosecurity risk. While this may be true, live-feed associated bacteria could also be beneficial to fish larvae through improved feed utilization or pathogen inhibition following host microbiota modification. The study objective was to elucidate the largely unexplored microbiota of rotifers propagated on five different diets through bacterial community profiling by 16S rRNA gene amplicon sequencing. Investigated rotifer samples had a median observed alpha-diversity of 338 ± 87 bacterial species. Alpha- and Gamma-Proteobacteria dominated the rotifer microbiota followed by members of classes Flavobacteriia, Cytophagia, Mollicutes, Phycisphaerae and Bacteroidia. Different diets significantly altered the bacterial communities associated with rotifers according to PERMANOVA test results and beta dispersion calculations. A common core rotifer microbiome included 31 bacterial species present in relative abundances over 0.01%. We discuss the functional role of some microbiome members. Our data suggested the presence of several known fish pathogens in stock rotifers. However, we found no evidence for increased loads of these presumptive taxa in propagated live-feed rotifers during this field trial. Live-feed rotifers (Brachionus plicatilis), propagated for use in commercial fish larviculture, share a core microbiome comprising thirty-one bacterial species despite significant variation in community structures between dietary regimes.
doi_str_mv 10.1093/femsle/fnaa020
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2350093406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A690773536</galeid><oup_id>10.1093/femsle/fnaa020</oup_id><sourcerecordid>A690773536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-6cc6d37ca145fb82c39e6f3cc8bbec3a3224fd464be540e9a932ae2eff9d342a3</originalsourceid><addsrcrecordid>eNqFkc1LHTEUxUNRqrXddikBN7oYzSSZzJulFVsFwY2uQyZz0xfJJM98CPavN4_3bIsIche55P7u4XIOQt9bctqSgZ0ZmJODM-OVIpR8Qvtt1_NGDGKx81-_h76k9EAI4ZSIz2iPUUK6YdHvoz93S8DWG1fAa8DB4MlCxsHjXAez1TGMNmS1njj7BI0BmHAM2RqICR__iEovbfAl4ZWzWmXrbDrBJVXKeqzDPEPUVjlsbFpip-KT1cXlEuEr2jXKJfi2fQ_Q_c_Lu4ur5ub21_XF-U2jOeW5EVqLifVatbwz44JqNoAwTOvFOIJmilHKzcQFH6HjBAY1MKqAgjHDxDhV7AAdb3RXMTwWSFnONmlwTnkIJUnKOlKt5ERU9OgN-hBK9PU6STkhrBVCsH_Ub-VAVvNCri6sReW5GEjfs46ttU7foWpNUG0NHoyt_-8tVM9TimDkKtpZxWfZErkOW27Cltuw68Lh9toyzjD9xV_TrcDJBghl9ZHYC2pPtd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400316663</pqid></control><display><type>article</type><title>The influence of diet on the microbiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Turgay, Emre ; Steinum, Terje Marken ; Eryalçın, Kamil Mert ; Yardımcı, Remziye Eda ; Karataş, Süheyla</creator><creatorcontrib>Turgay, Emre ; Steinum, Terje Marken ; Eryalçın, Kamil Mert ; Yardımcı, Remziye Eda ; Karataş, Süheyla</creatorcontrib><description>ABSTRACT Live-feed is indispensable to commercial fish larviculture. However, high bacterial loads in rotifers could pose a biosecurity risk. While this may be true, live-feed associated bacteria could also be beneficial to fish larvae through improved feed utilization or pathogen inhibition following host microbiota modification. The study objective was to elucidate the largely unexplored microbiota of rotifers propagated on five different diets through bacterial community profiling by 16S rRNA gene amplicon sequencing. Investigated rotifer samples had a median observed alpha-diversity of 338 ± 87 bacterial species. Alpha- and Gamma-Proteobacteria dominated the rotifer microbiota followed by members of classes Flavobacteriia, Cytophagia, Mollicutes, Phycisphaerae and Bacteroidia. Different diets significantly altered the bacterial communities associated with rotifers according to PERMANOVA test results and beta dispersion calculations. A common core rotifer microbiome included 31 bacterial species present in relative abundances over 0.01%. We discuss the functional role of some microbiome members. Our data suggested the presence of several known fish pathogens in stock rotifers. However, we found no evidence for increased loads of these presumptive taxa in propagated live-feed rotifers during this field trial. Live-feed rotifers (Brachionus plicatilis), propagated for use in commercial fish larviculture, share a core microbiome comprising thirty-one bacterial species despite significant variation in community structures between dietary regimes.</description><identifier>ISSN: 1574-6968</identifier><identifier>ISSN: 0378-1097</identifier><identifier>EISSN: 1574-6968</identifier><identifier>DOI: 10.1093/femsle/fnaa020</identifier><identifier>PMID: 32005987</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animal Feed - analysis ; Animals ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Biosecurity ; Diet ; Diet - veterinary ; Feed conversion ; Feeds ; Fish ; Fishes ; Fishes - growth &amp; development ; Fishes - metabolism ; Gene sequencing ; Larva - growth &amp; development ; Larva - metabolism ; Larvae ; Microbiology ; Microbiomes ; Microbiota ; Microbiota (Symbiotic organisms) ; Pathogens ; Physiological aspects ; Rotifera ; Rotifera - metabolism ; Rotifera - microbiology ; rRNA 16S</subject><ispartof>FEMS microbiology letters, 2020-01, Vol.367 (2), p.1</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of FEMS. 2020</rights><rights>FEMS 2020.</rights><rights>COPYRIGHT 2020 Oxford University Press</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of FEMS.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-6cc6d37ca145fb82c39e6f3cc8bbec3a3224fd464be540e9a932ae2eff9d342a3</citedby><cites>FETCH-LOGICAL-c424t-6cc6d37ca145fb82c39e6f3cc8bbec3a3224fd464be540e9a932ae2eff9d342a3</cites><orcidid>0000-0001-9964-3919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1579,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32005987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turgay, Emre</creatorcontrib><creatorcontrib>Steinum, Terje Marken</creatorcontrib><creatorcontrib>Eryalçın, Kamil Mert</creatorcontrib><creatorcontrib>Yardımcı, Remziye Eda</creatorcontrib><creatorcontrib>Karataş, Süheyla</creatorcontrib><title>The influence of diet on the microbiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture</title><title>FEMS microbiology letters</title><addtitle>FEMS Microbiol Lett</addtitle><description>ABSTRACT Live-feed is indispensable to commercial fish larviculture. However, high bacterial loads in rotifers could pose a biosecurity risk. While this may be true, live-feed associated bacteria could also be beneficial to fish larvae through improved feed utilization or pathogen inhibition following host microbiota modification. The study objective was to elucidate the largely unexplored microbiota of rotifers propagated on five different diets through bacterial community profiling by 16S rRNA gene amplicon sequencing. Investigated rotifer samples had a median observed alpha-diversity of 338 ± 87 bacterial species. Alpha- and Gamma-Proteobacteria dominated the rotifer microbiota followed by members of classes Flavobacteriia, Cytophagia, Mollicutes, Phycisphaerae and Bacteroidia. Different diets significantly altered the bacterial communities associated with rotifers according to PERMANOVA test results and beta dispersion calculations. A common core rotifer microbiome included 31 bacterial species present in relative abundances over 0.01%. We discuss the functional role of some microbiome members. Our data suggested the presence of several known fish pathogens in stock rotifers. However, we found no evidence for increased loads of these presumptive taxa in propagated live-feed rotifers during this field trial. Live-feed rotifers (Brachionus plicatilis), propagated for use in commercial fish larviculture, share a core microbiome comprising thirty-one bacterial species despite significant variation in community structures between dietary regimes.</description><subject>Animal Feed - analysis</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Biosecurity</subject><subject>Diet</subject><subject>Diet - veterinary</subject><subject>Feed conversion</subject><subject>Feeds</subject><subject>Fish</subject><subject>Fishes</subject><subject>Fishes - growth &amp; development</subject><subject>Fishes - metabolism</subject><subject>Gene sequencing</subject><subject>Larva - growth &amp; development</subject><subject>Larva - metabolism</subject><subject>Larvae</subject><subject>Microbiology</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Pathogens</subject><subject>Physiological aspects</subject><subject>Rotifera</subject><subject>Rotifera - metabolism</subject><subject>Rotifera - microbiology</subject><subject>rRNA 16S</subject><issn>1574-6968</issn><issn>0378-1097</issn><issn>1574-6968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1LHTEUxUNRqrXddikBN7oYzSSZzJulFVsFwY2uQyZz0xfJJM98CPavN4_3bIsIche55P7u4XIOQt9bctqSgZ0ZmJODM-OVIpR8Qvtt1_NGDGKx81-_h76k9EAI4ZSIz2iPUUK6YdHvoz93S8DWG1fAa8DB4MlCxsHjXAez1TGMNmS1njj7BI0BmHAM2RqICR__iEovbfAl4ZWzWmXrbDrBJVXKeqzDPEPUVjlsbFpip-KT1cXlEuEr2jXKJfi2fQ_Q_c_Lu4ur5ub21_XF-U2jOeW5EVqLifVatbwz44JqNoAwTOvFOIJmilHKzcQFH6HjBAY1MKqAgjHDxDhV7AAdb3RXMTwWSFnONmlwTnkIJUnKOlKt5ERU9OgN-hBK9PU6STkhrBVCsH_Ub-VAVvNCri6sReW5GEjfs46ttU7foWpNUG0NHoyt_-8tVM9TimDkKtpZxWfZErkOW27Cltuw68Lh9toyzjD9xV_TrcDJBghl9ZHYC2pPtd4</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Turgay, Emre</creator><creator>Steinum, Terje Marken</creator><creator>Eryalçın, Kamil Mert</creator><creator>Yardımcı, Remziye Eda</creator><creator>Karataş, Süheyla</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9964-3919</orcidid></search><sort><creationdate>20200101</creationdate><title>The influence of diet on the microbiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture</title><author>Turgay, Emre ; Steinum, Terje Marken ; Eryalçın, Kamil Mert ; Yardımcı, Remziye Eda ; Karataş, Süheyla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-6cc6d37ca145fb82c39e6f3cc8bbec3a3224fd464be540e9a932ae2eff9d342a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Feed - analysis</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Biosecurity</topic><topic>Diet</topic><topic>Diet - veterinary</topic><topic>Feed conversion</topic><topic>Feeds</topic><topic>Fish</topic><topic>Fishes</topic><topic>Fishes - growth &amp; development</topic><topic>Fishes - metabolism</topic><topic>Gene sequencing</topic><topic>Larva - growth &amp; development</topic><topic>Larva - metabolism</topic><topic>Larvae</topic><topic>Microbiology</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Pathogens</topic><topic>Physiological aspects</topic><topic>Rotifera</topic><topic>Rotifera - metabolism</topic><topic>Rotifera - microbiology</topic><topic>rRNA 16S</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turgay, Emre</creatorcontrib><creatorcontrib>Steinum, Terje Marken</creatorcontrib><creatorcontrib>Eryalçın, Kamil Mert</creatorcontrib><creatorcontrib>Yardımcı, Remziye Eda</creatorcontrib><creatorcontrib>Karataş, Süheyla</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turgay, Emre</au><au>Steinum, Terje Marken</au><au>Eryalçın, Kamil Mert</au><au>Yardımcı, Remziye Eda</au><au>Karataş, Süheyla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of diet on the microbiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture</atitle><jtitle>FEMS microbiology letters</jtitle><addtitle>FEMS Microbiol Lett</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>367</volume><issue>2</issue><spage>1</spage><pages>1-</pages><issn>1574-6968</issn><issn>0378-1097</issn><eissn>1574-6968</eissn><abstract>ABSTRACT Live-feed is indispensable to commercial fish larviculture. However, high bacterial loads in rotifers could pose a biosecurity risk. While this may be true, live-feed associated bacteria could also be beneficial to fish larvae through improved feed utilization or pathogen inhibition following host microbiota modification. The study objective was to elucidate the largely unexplored microbiota of rotifers propagated on five different diets through bacterial community profiling by 16S rRNA gene amplicon sequencing. Investigated rotifer samples had a median observed alpha-diversity of 338 ± 87 bacterial species. Alpha- and Gamma-Proteobacteria dominated the rotifer microbiota followed by members of classes Flavobacteriia, Cytophagia, Mollicutes, Phycisphaerae and Bacteroidia. Different diets significantly altered the bacterial communities associated with rotifers according to PERMANOVA test results and beta dispersion calculations. A common core rotifer microbiome included 31 bacterial species present in relative abundances over 0.01%. We discuss the functional role of some microbiome members. Our data suggested the presence of several known fish pathogens in stock rotifers. However, we found no evidence for increased loads of these presumptive taxa in propagated live-feed rotifers during this field trial. Live-feed rotifers (Brachionus plicatilis), propagated for use in commercial fish larviculture, share a core microbiome comprising thirty-one bacterial species despite significant variation in community structures between dietary regimes.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32005987</pmid><doi>10.1093/femsle/fnaa020</doi><orcidid>https://orcid.org/0000-0001-9964-3919</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1574-6968
ispartof FEMS microbiology letters, 2020-01, Vol.367 (2), p.1
issn 1574-6968
0378-1097
1574-6968
language eng
recordid cdi_proquest_miscellaneous_2350093406
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Animal Feed - analysis
Animals
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Biosecurity
Diet
Diet - veterinary
Feed conversion
Feeds
Fish
Fishes
Fishes - growth & development
Fishes - metabolism
Gene sequencing
Larva - growth & development
Larva - metabolism
Larvae
Microbiology
Microbiomes
Microbiota
Microbiota (Symbiotic organisms)
Pathogens
Physiological aspects
Rotifera
Rotifera - metabolism
Rotifera - microbiology
rRNA 16S
title The influence of diet on the microbiota of live-feed rotifers (Brachionus plicatilis) used in commercial fish larviculture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20diet%20on%20the%20microbiota%20of%20live-feed%20rotifers%20(Brachionus%20plicatilis)%20used%20in%20commercial%20fish%20larviculture&rft.jtitle=FEMS%20microbiology%20letters&rft.au=Turgay,%20Emre&rft.date=2020-01-01&rft.volume=367&rft.issue=2&rft.spage=1&rft.pages=1-&rft.issn=1574-6968&rft.eissn=1574-6968&rft_id=info:doi/10.1093/femsle/fnaa020&rft_dat=%3Cgale_proqu%3EA690773536%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400316663&rft_id=info:pmid/32005987&rft_galeid=A690773536&rft_oup_id=10.1093/femsle/fnaa020&rfr_iscdi=true