Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones

Long bones of the appendicular skeleton are formed through endochondral ossification. Endochondral bone formation initiates with mesenchymal condensation, followed by the formation of a cartilage template which is replaced by bone. Fibroblast growth factor 9 (FGF9) regulates bone development. Fgf9 −...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Histochemistry and cell biology 2020-04, Vol.153 (4), p.215-223
Hauptverfasser: Harada, Masayo, Akita, Keiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 4
container_start_page 215
container_title Histochemistry and cell biology
container_volume 153
creator Harada, Masayo
Akita, Keiichi
description Long bones of the appendicular skeleton are formed through endochondral ossification. Endochondral bone formation initiates with mesenchymal condensation, followed by the formation of a cartilage template which is replaced by bone. Fibroblast growth factor 9 (FGF9) regulates bone development. Fgf9 −/− mice exhibit disproportionate shortening of proximal skeletal elements. Fgf9 missense mutations in mice and humans induce joint synostosis. Thus, FGF9 is critical for regulating bone length and joint formation. Conversely, mechanisms regulating bone width remain unclear. Here, we showed that the homozygous elbow knee synostosis (Eks) mutant mice harboring N143T mutation in Fgf9 have wide long bones at birth. We investigated the cellular and molecular mechanisms underlying the widened prospective humerus in Fgf9 Eks/Eks embryos. Increased and expanded FGF signaling in concert with wider expression domain of Fgf receptor 3 ( Fgfr3 ) during chondrogenic condensation of the humerus led to widened cartilage, which resulted in the formation of wider prospective humeri in neonatal Fgf9 Eks/Eks mice. Increased and expanded FGF signaling during chondrogenic condensation led to increased density of chondrocytes of the humeri accompanied by increased proliferation of chondrocytes which express inappropriately higher levels of cyclin D1 in Fgf9 Eks/Eks embryos. The results suggest that FGF9 regulates the width of prospective long bones by controlling the width of chondrogenic condensation.
doi_str_mv 10.1007/s00418-020-01844-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2350093116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350093116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-745cbda81cda37ebc2f986e7588a3d9d4db0962132fb02d6af85b00370d9fb2f3</originalsourceid><addsrcrecordid>eNp9kUlLBDEQhYMoOo7-AQ8S8OKltbL0kqOIG7hcFLw1WceWnkSTbgb_vdF2AQ-eUiTfe1Wph9AegSMCUB8nAE6aAigUQBrOC7qGZoQzWhAiHtfRDARviirfbKHtlJ4BSCko3URbjALQilczZG_CmCx2nYpB9TINeBHDanjCTuohRCzwbdbf4-U4yKELHvdWmoSHgFedsVg_BW9iWFjfaaxzbX2auOBwH_wCq-Bt2kEbTvbJ7n6dc_RwfnZ_ellc311cnZ5cF5pzMhQ1L7UysiHaSFZbpakTTWXrsmkkM8Jwo0BUlDDqFFBTSdeUCoDVYIRT1LE5Opx8X2J4HW0a2mWXtO176W3-Z0tZCSAYIVVGD_6gz2GMPk-XKQFQUlZBpuhE6RhSita1L7FbyvjWEmg_QminENocQvsZQlbP0f6X9aiW1vxIvreeATYBKT_5hY2_vf-xfQd7iJG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390052360</pqid></control><display><type>article</type><title>Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Harada, Masayo ; Akita, Keiichi</creator><creatorcontrib>Harada, Masayo ; Akita, Keiichi</creatorcontrib><description>Long bones of the appendicular skeleton are formed through endochondral ossification. Endochondral bone formation initiates with mesenchymal condensation, followed by the formation of a cartilage template which is replaced by bone. Fibroblast growth factor 9 (FGF9) regulates bone development. Fgf9 −/− mice exhibit disproportionate shortening of proximal skeletal elements. Fgf9 missense mutations in mice and humans induce joint synostosis. Thus, FGF9 is critical for regulating bone length and joint formation. Conversely, mechanisms regulating bone width remain unclear. Here, we showed that the homozygous elbow knee synostosis (Eks) mutant mice harboring N143T mutation in Fgf9 have wide long bones at birth. We investigated the cellular and molecular mechanisms underlying the widened prospective humerus in Fgf9 Eks/Eks embryos. Increased and expanded FGF signaling in concert with wider expression domain of Fgf receptor 3 ( Fgfr3 ) during chondrogenic condensation of the humerus led to widened cartilage, which resulted in the formation of wider prospective humeri in neonatal Fgf9 Eks/Eks mice. Increased and expanded FGF signaling during chondrogenic condensation led to increased density of chondrocytes of the humeri accompanied by increased proliferation of chondrocytes which express inappropriately higher levels of cyclin D1 in Fgf9 Eks/Eks embryos. The results suggest that FGF9 regulates the width of prospective long bones by controlling the width of chondrogenic condensation.</description><identifier>ISSN: 0948-6143</identifier><identifier>EISSN: 1432-119X</identifier><identifier>DOI: 10.1007/s00418-020-01844-2</identifier><identifier>PMID: 32002646</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bone and Bones - metabolism ; Bone growth ; Bones ; Cartilage ; Cell Biology ; Chondrocytes ; Chondrocytes - metabolism ; Chondrogenesis ; Cyclin D1 ; Developmental Biology ; Dysostosis ; Elbow ; Elbow Joint - metabolism ; Embryos ; Endochondral bone ; Female ; Fibroblast growth factor 9 ; Fibroblast Growth Factor 9 - deficiency ; Fibroblast Growth Factor 9 - genetics ; Fibroblast Growth Factor 9 - metabolism ; Fibroblast growth factor receptor 9 ; Fibroblast growth factor receptors ; Fibroblasts ; Growth factors ; Humerus ; Male ; Mesenchyme ; Mice ; Mice, Knockout ; Mice, Mutant Strains ; Missense mutation ; Molecular modelling ; Mutation ; Neonates ; Original Paper ; Ossification ; Osteogenesis ; Skeleton</subject><ispartof>Histochemistry and cell biology, 2020-04, Vol.153 (4), p.215-223</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-745cbda81cda37ebc2f986e7588a3d9d4db0962132fb02d6af85b00370d9fb2f3</citedby><cites>FETCH-LOGICAL-c441t-745cbda81cda37ebc2f986e7588a3d9d4db0962132fb02d6af85b00370d9fb2f3</cites><orcidid>0000-0002-2927-2937 ; 0000-0001-8916-5618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00418-020-01844-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00418-020-01844-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32002646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harada, Masayo</creatorcontrib><creatorcontrib>Akita, Keiichi</creatorcontrib><title>Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones</title><title>Histochemistry and cell biology</title><addtitle>Histochem Cell Biol</addtitle><addtitle>Histochem Cell Biol</addtitle><description>Long bones of the appendicular skeleton are formed through endochondral ossification. Endochondral bone formation initiates with mesenchymal condensation, followed by the formation of a cartilage template which is replaced by bone. Fibroblast growth factor 9 (FGF9) regulates bone development. Fgf9 −/− mice exhibit disproportionate shortening of proximal skeletal elements. Fgf9 missense mutations in mice and humans induce joint synostosis. Thus, FGF9 is critical for regulating bone length and joint formation. Conversely, mechanisms regulating bone width remain unclear. Here, we showed that the homozygous elbow knee synostosis (Eks) mutant mice harboring N143T mutation in Fgf9 have wide long bones at birth. We investigated the cellular and molecular mechanisms underlying the widened prospective humerus in Fgf9 Eks/Eks embryos. Increased and expanded FGF signaling in concert with wider expression domain of Fgf receptor 3 ( Fgfr3 ) during chondrogenic condensation of the humerus led to widened cartilage, which resulted in the formation of wider prospective humeri in neonatal Fgf9 Eks/Eks mice. Increased and expanded FGF signaling during chondrogenic condensation led to increased density of chondrocytes of the humeri accompanied by increased proliferation of chondrocytes which express inappropriately higher levels of cyclin D1 in Fgf9 Eks/Eks embryos. The results suggest that FGF9 regulates the width of prospective long bones by controlling the width of chondrogenic condensation.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone and Bones - metabolism</subject><subject>Bone growth</subject><subject>Bones</subject><subject>Cartilage</subject><subject>Cell Biology</subject><subject>Chondrocytes</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis</subject><subject>Cyclin D1</subject><subject>Developmental Biology</subject><subject>Dysostosis</subject><subject>Elbow</subject><subject>Elbow Joint - metabolism</subject><subject>Embryos</subject><subject>Endochondral bone</subject><subject>Female</subject><subject>Fibroblast growth factor 9</subject><subject>Fibroblast Growth Factor 9 - deficiency</subject><subject>Fibroblast Growth Factor 9 - genetics</subject><subject>Fibroblast Growth Factor 9 - metabolism</subject><subject>Fibroblast growth factor receptor 9</subject><subject>Fibroblast growth factor receptors</subject><subject>Fibroblasts</subject><subject>Growth factors</subject><subject>Humerus</subject><subject>Male</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Mutant Strains</subject><subject>Missense mutation</subject><subject>Molecular modelling</subject><subject>Mutation</subject><subject>Neonates</subject><subject>Original Paper</subject><subject>Ossification</subject><subject>Osteogenesis</subject><subject>Skeleton</subject><issn>0948-6143</issn><issn>1432-119X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUlLBDEQhYMoOo7-AQ8S8OKltbL0kqOIG7hcFLw1WceWnkSTbgb_vdF2AQ-eUiTfe1Wph9AegSMCUB8nAE6aAigUQBrOC7qGZoQzWhAiHtfRDARviirfbKHtlJ4BSCko3URbjALQilczZG_CmCx2nYpB9TINeBHDanjCTuohRCzwbdbf4-U4yKELHvdWmoSHgFedsVg_BW9iWFjfaaxzbX2auOBwH_wCq-Bt2kEbTvbJ7n6dc_RwfnZ_ellc311cnZ5cF5pzMhQ1L7UysiHaSFZbpakTTWXrsmkkM8Jwo0BUlDDqFFBTSdeUCoDVYIRT1LE5Opx8X2J4HW0a2mWXtO176W3-Z0tZCSAYIVVGD_6gz2GMPk-XKQFQUlZBpuhE6RhSita1L7FbyvjWEmg_QminENocQvsZQlbP0f6X9aiW1vxIvreeATYBKT_5hY2_vf-xfQd7iJG8</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Harada, Masayo</creator><creator>Akita, Keiichi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2927-2937</orcidid><orcidid>https://orcid.org/0000-0001-8916-5618</orcidid></search><sort><creationdate>20200401</creationdate><title>Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones</title><author>Harada, Masayo ; Akita, Keiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-745cbda81cda37ebc2f986e7588a3d9d4db0962132fb02d6af85b00370d9fb2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone and Bones - metabolism</topic><topic>Bone growth</topic><topic>Bones</topic><topic>Cartilage</topic><topic>Cell Biology</topic><topic>Chondrocytes</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis</topic><topic>Cyclin D1</topic><topic>Developmental Biology</topic><topic>Dysostosis</topic><topic>Elbow</topic><topic>Elbow Joint - metabolism</topic><topic>Embryos</topic><topic>Endochondral bone</topic><topic>Female</topic><topic>Fibroblast growth factor 9</topic><topic>Fibroblast Growth Factor 9 - deficiency</topic><topic>Fibroblast Growth Factor 9 - genetics</topic><topic>Fibroblast Growth Factor 9 - metabolism</topic><topic>Fibroblast growth factor receptor 9</topic><topic>Fibroblast growth factor receptors</topic><topic>Fibroblasts</topic><topic>Growth factors</topic><topic>Humerus</topic><topic>Male</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Mutant Strains</topic><topic>Missense mutation</topic><topic>Molecular modelling</topic><topic>Mutation</topic><topic>Neonates</topic><topic>Original Paper</topic><topic>Ossification</topic><topic>Osteogenesis</topic><topic>Skeleton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harada, Masayo</creatorcontrib><creatorcontrib>Akita, Keiichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Histochemistry and cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harada, Masayo</au><au>Akita, Keiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones</atitle><jtitle>Histochemistry and cell biology</jtitle><stitle>Histochem Cell Biol</stitle><addtitle>Histochem Cell Biol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>153</volume><issue>4</issue><spage>215</spage><epage>223</epage><pages>215-223</pages><issn>0948-6143</issn><eissn>1432-119X</eissn><abstract>Long bones of the appendicular skeleton are formed through endochondral ossification. Endochondral bone formation initiates with mesenchymal condensation, followed by the formation of a cartilage template which is replaced by bone. Fibroblast growth factor 9 (FGF9) regulates bone development. Fgf9 −/− mice exhibit disproportionate shortening of proximal skeletal elements. Fgf9 missense mutations in mice and humans induce joint synostosis. Thus, FGF9 is critical for regulating bone length and joint formation. Conversely, mechanisms regulating bone width remain unclear. Here, we showed that the homozygous elbow knee synostosis (Eks) mutant mice harboring N143T mutation in Fgf9 have wide long bones at birth. We investigated the cellular and molecular mechanisms underlying the widened prospective humerus in Fgf9 Eks/Eks embryos. Increased and expanded FGF signaling in concert with wider expression domain of Fgf receptor 3 ( Fgfr3 ) during chondrogenic condensation of the humerus led to widened cartilage, which resulted in the formation of wider prospective humeri in neonatal Fgf9 Eks/Eks mice. Increased and expanded FGF signaling during chondrogenic condensation led to increased density of chondrocytes of the humeri accompanied by increased proliferation of chondrocytes which express inappropriately higher levels of cyclin D1 in Fgf9 Eks/Eks embryos. The results suggest that FGF9 regulates the width of prospective long bones by controlling the width of chondrogenic condensation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32002646</pmid><doi>10.1007/s00418-020-01844-2</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2927-2937</orcidid><orcidid>https://orcid.org/0000-0001-8916-5618</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0948-6143
ispartof Histochemistry and cell biology, 2020-04, Vol.153 (4), p.215-223
issn 0948-6143
1432-119X
language eng
recordid cdi_proquest_miscellaneous_2350093116
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bone and Bones - metabolism
Bone growth
Bones
Cartilage
Cell Biology
Chondrocytes
Chondrocytes - metabolism
Chondrogenesis
Cyclin D1
Developmental Biology
Dysostosis
Elbow
Elbow Joint - metabolism
Embryos
Endochondral bone
Female
Fibroblast growth factor 9
Fibroblast Growth Factor 9 - deficiency
Fibroblast Growth Factor 9 - genetics
Fibroblast Growth Factor 9 - metabolism
Fibroblast growth factor receptor 9
Fibroblast growth factor receptors
Fibroblasts
Growth factors
Humerus
Male
Mesenchyme
Mice
Mice, Knockout
Mice, Mutant Strains
Missense mutation
Molecular modelling
Mutation
Neonates
Original Paper
Ossification
Osteogenesis
Skeleton
title Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mouse%20fibroblast%20growth%20factor%209%20N143T%20mutation%20leads%20to%20wide%20chondrogenic%20condensation%20of%20long%20bones&rft.jtitle=Histochemistry%20and%20cell%20biology&rft.au=Harada,%20Masayo&rft.date=2020-04-01&rft.volume=153&rft.issue=4&rft.spage=215&rft.epage=223&rft.pages=215-223&rft.issn=0948-6143&rft.eissn=1432-119X&rft_id=info:doi/10.1007/s00418-020-01844-2&rft_dat=%3Cproquest_cross%3E2350093116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390052360&rft_id=info:pmid/32002646&rfr_iscdi=true