Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones
Long bones of the appendicular skeleton are formed through endochondral ossification. Endochondral bone formation initiates with mesenchymal condensation, followed by the formation of a cartilage template which is replaced by bone. Fibroblast growth factor 9 (FGF9) regulates bone development. Fgf9 −...
Gespeichert in:
Veröffentlicht in: | Histochemistry and cell biology 2020-04, Vol.153 (4), p.215-223 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | 4 |
container_start_page | 215 |
container_title | Histochemistry and cell biology |
container_volume | 153 |
creator | Harada, Masayo Akita, Keiichi |
description | Long bones of the appendicular skeleton are formed through endochondral ossification. Endochondral bone formation initiates with mesenchymal condensation, followed by the formation of a cartilage template which is replaced by bone. Fibroblast growth factor 9 (FGF9) regulates bone development.
Fgf9
−/−
mice exhibit disproportionate shortening of proximal skeletal elements.
Fgf9
missense mutations in mice and humans induce joint synostosis. Thus, FGF9 is critical for regulating bone length and joint formation. Conversely, mechanisms regulating bone width remain unclear. Here, we showed that the homozygous elbow knee synostosis (Eks) mutant mice harboring N143T mutation in
Fgf9
have wide long bones at birth. We investigated the cellular and molecular mechanisms underlying the widened prospective humerus in
Fgf9
Eks/Eks
embryos. Increased and expanded FGF signaling in concert with wider expression domain of
Fgf receptor 3
(
Fgfr3
) during chondrogenic condensation of the humerus led to widened cartilage, which resulted in the formation of wider prospective humeri in neonatal
Fgf9
Eks/Eks
mice. Increased and expanded FGF signaling during chondrogenic condensation led to increased density of chondrocytes of the humeri accompanied by increased proliferation of chondrocytes which express inappropriately higher levels of cyclin D1 in
Fgf9
Eks/Eks
embryos. The results suggest that FGF9 regulates the width of prospective long bones by controlling the width of chondrogenic condensation. |
doi_str_mv | 10.1007/s00418-020-01844-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2350093116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2350093116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-745cbda81cda37ebc2f986e7588a3d9d4db0962132fb02d6af85b00370d9fb2f3</originalsourceid><addsrcrecordid>eNp9kUlLBDEQhYMoOo7-AQ8S8OKltbL0kqOIG7hcFLw1WceWnkSTbgb_vdF2AQ-eUiTfe1Wph9AegSMCUB8nAE6aAigUQBrOC7qGZoQzWhAiHtfRDARviirfbKHtlJ4BSCko3URbjALQilczZG_CmCx2nYpB9TINeBHDanjCTuohRCzwbdbf4-U4yKELHvdWmoSHgFedsVg_BW9iWFjfaaxzbX2auOBwH_wCq-Bt2kEbTvbJ7n6dc_RwfnZ_ellc311cnZ5cF5pzMhQ1L7UysiHaSFZbpakTTWXrsmkkM8Jwo0BUlDDqFFBTSdeUCoDVYIRT1LE5Opx8X2J4HW0a2mWXtO176W3-Z0tZCSAYIVVGD_6gz2GMPk-XKQFQUlZBpuhE6RhSita1L7FbyvjWEmg_QminENocQvsZQlbP0f6X9aiW1vxIvreeATYBKT_5hY2_vf-xfQd7iJG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390052360</pqid></control><display><type>article</type><title>Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Harada, Masayo ; Akita, Keiichi</creator><creatorcontrib>Harada, Masayo ; Akita, Keiichi</creatorcontrib><description>Long bones of the appendicular skeleton are formed through endochondral ossification. Endochondral bone formation initiates with mesenchymal condensation, followed by the formation of a cartilage template which is replaced by bone. Fibroblast growth factor 9 (FGF9) regulates bone development.
Fgf9
−/−
mice exhibit disproportionate shortening of proximal skeletal elements.
Fgf9
missense mutations in mice and humans induce joint synostosis. Thus, FGF9 is critical for regulating bone length and joint formation. Conversely, mechanisms regulating bone width remain unclear. Here, we showed that the homozygous elbow knee synostosis (Eks) mutant mice harboring N143T mutation in
Fgf9
have wide long bones at birth. We investigated the cellular and molecular mechanisms underlying the widened prospective humerus in
Fgf9
Eks/Eks
embryos. Increased and expanded FGF signaling in concert with wider expression domain of
Fgf receptor 3
(
Fgfr3
) during chondrogenic condensation of the humerus led to widened cartilage, which resulted in the formation of wider prospective humeri in neonatal
Fgf9
Eks/Eks
mice. Increased and expanded FGF signaling during chondrogenic condensation led to increased density of chondrocytes of the humeri accompanied by increased proliferation of chondrocytes which express inappropriately higher levels of cyclin D1 in
Fgf9
Eks/Eks
embryos. The results suggest that FGF9 regulates the width of prospective long bones by controlling the width of chondrogenic condensation.</description><identifier>ISSN: 0948-6143</identifier><identifier>EISSN: 1432-119X</identifier><identifier>DOI: 10.1007/s00418-020-01844-2</identifier><identifier>PMID: 32002646</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bone and Bones - metabolism ; Bone growth ; Bones ; Cartilage ; Cell Biology ; Chondrocytes ; Chondrocytes - metabolism ; Chondrogenesis ; Cyclin D1 ; Developmental Biology ; Dysostosis ; Elbow ; Elbow Joint - metabolism ; Embryos ; Endochondral bone ; Female ; Fibroblast growth factor 9 ; Fibroblast Growth Factor 9 - deficiency ; Fibroblast Growth Factor 9 - genetics ; Fibroblast Growth Factor 9 - metabolism ; Fibroblast growth factor receptor 9 ; Fibroblast growth factor receptors ; Fibroblasts ; Growth factors ; Humerus ; Male ; Mesenchyme ; Mice ; Mice, Knockout ; Mice, Mutant Strains ; Missense mutation ; Molecular modelling ; Mutation ; Neonates ; Original Paper ; Ossification ; Osteogenesis ; Skeleton</subject><ispartof>Histochemistry and cell biology, 2020-04, Vol.153 (4), p.215-223</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-745cbda81cda37ebc2f986e7588a3d9d4db0962132fb02d6af85b00370d9fb2f3</citedby><cites>FETCH-LOGICAL-c441t-745cbda81cda37ebc2f986e7588a3d9d4db0962132fb02d6af85b00370d9fb2f3</cites><orcidid>0000-0002-2927-2937 ; 0000-0001-8916-5618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00418-020-01844-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00418-020-01844-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32002646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harada, Masayo</creatorcontrib><creatorcontrib>Akita, Keiichi</creatorcontrib><title>Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones</title><title>Histochemistry and cell biology</title><addtitle>Histochem Cell Biol</addtitle><addtitle>Histochem Cell Biol</addtitle><description>Long bones of the appendicular skeleton are formed through endochondral ossification. Endochondral bone formation initiates with mesenchymal condensation, followed by the formation of a cartilage template which is replaced by bone. Fibroblast growth factor 9 (FGF9) regulates bone development.
Fgf9
−/−
mice exhibit disproportionate shortening of proximal skeletal elements.
Fgf9
missense mutations in mice and humans induce joint synostosis. Thus, FGF9 is critical for regulating bone length and joint formation. Conversely, mechanisms regulating bone width remain unclear. Here, we showed that the homozygous elbow knee synostosis (Eks) mutant mice harboring N143T mutation in
Fgf9
have wide long bones at birth. We investigated the cellular and molecular mechanisms underlying the widened prospective humerus in
Fgf9
Eks/Eks
embryos. Increased and expanded FGF signaling in concert with wider expression domain of
Fgf receptor 3
(
Fgfr3
) during chondrogenic condensation of the humerus led to widened cartilage, which resulted in the formation of wider prospective humeri in neonatal
Fgf9
Eks/Eks
mice. Increased and expanded FGF signaling during chondrogenic condensation led to increased density of chondrocytes of the humeri accompanied by increased proliferation of chondrocytes which express inappropriately higher levels of cyclin D1 in
Fgf9
Eks/Eks
embryos. The results suggest that FGF9 regulates the width of prospective long bones by controlling the width of chondrogenic condensation.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone and Bones - metabolism</subject><subject>Bone growth</subject><subject>Bones</subject><subject>Cartilage</subject><subject>Cell Biology</subject><subject>Chondrocytes</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrogenesis</subject><subject>Cyclin D1</subject><subject>Developmental Biology</subject><subject>Dysostosis</subject><subject>Elbow</subject><subject>Elbow Joint - metabolism</subject><subject>Embryos</subject><subject>Endochondral bone</subject><subject>Female</subject><subject>Fibroblast growth factor 9</subject><subject>Fibroblast Growth Factor 9 - deficiency</subject><subject>Fibroblast Growth Factor 9 - genetics</subject><subject>Fibroblast Growth Factor 9 - metabolism</subject><subject>Fibroblast growth factor receptor 9</subject><subject>Fibroblast growth factor receptors</subject><subject>Fibroblasts</subject><subject>Growth factors</subject><subject>Humerus</subject><subject>Male</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Mutant Strains</subject><subject>Missense mutation</subject><subject>Molecular modelling</subject><subject>Mutation</subject><subject>Neonates</subject><subject>Original Paper</subject><subject>Ossification</subject><subject>Osteogenesis</subject><subject>Skeleton</subject><issn>0948-6143</issn><issn>1432-119X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUlLBDEQhYMoOo7-AQ8S8OKltbL0kqOIG7hcFLw1WceWnkSTbgb_vdF2AQ-eUiTfe1Wph9AegSMCUB8nAE6aAigUQBrOC7qGZoQzWhAiHtfRDARviirfbKHtlJ4BSCko3URbjALQilczZG_CmCx2nYpB9TINeBHDanjCTuohRCzwbdbf4-U4yKELHvdWmoSHgFedsVg_BW9iWFjfaaxzbX2auOBwH_wCq-Bt2kEbTvbJ7n6dc_RwfnZ_ellc311cnZ5cF5pzMhQ1L7UysiHaSFZbpakTTWXrsmkkM8Jwo0BUlDDqFFBTSdeUCoDVYIRT1LE5Opx8X2J4HW0a2mWXtO176W3-Z0tZCSAYIVVGD_6gz2GMPk-XKQFQUlZBpuhE6RhSita1L7FbyvjWEmg_QminENocQvsZQlbP0f6X9aiW1vxIvreeATYBKT_5hY2_vf-xfQd7iJG8</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Harada, Masayo</creator><creator>Akita, Keiichi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2927-2937</orcidid><orcidid>https://orcid.org/0000-0001-8916-5618</orcidid></search><sort><creationdate>20200401</creationdate><title>Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones</title><author>Harada, Masayo ; Akita, Keiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-745cbda81cda37ebc2f986e7588a3d9d4db0962132fb02d6af85b00370d9fb2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone and Bones - metabolism</topic><topic>Bone growth</topic><topic>Bones</topic><topic>Cartilage</topic><topic>Cell Biology</topic><topic>Chondrocytes</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrogenesis</topic><topic>Cyclin D1</topic><topic>Developmental Biology</topic><topic>Dysostosis</topic><topic>Elbow</topic><topic>Elbow Joint - metabolism</topic><topic>Embryos</topic><topic>Endochondral bone</topic><topic>Female</topic><topic>Fibroblast growth factor 9</topic><topic>Fibroblast Growth Factor 9 - deficiency</topic><topic>Fibroblast Growth Factor 9 - genetics</topic><topic>Fibroblast Growth Factor 9 - metabolism</topic><topic>Fibroblast growth factor receptor 9</topic><topic>Fibroblast growth factor receptors</topic><topic>Fibroblasts</topic><topic>Growth factors</topic><topic>Humerus</topic><topic>Male</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Mutant Strains</topic><topic>Missense mutation</topic><topic>Molecular modelling</topic><topic>Mutation</topic><topic>Neonates</topic><topic>Original Paper</topic><topic>Ossification</topic><topic>Osteogenesis</topic><topic>Skeleton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harada, Masayo</creatorcontrib><creatorcontrib>Akita, Keiichi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Histochemistry and cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harada, Masayo</au><au>Akita, Keiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones</atitle><jtitle>Histochemistry and cell biology</jtitle><stitle>Histochem Cell Biol</stitle><addtitle>Histochem Cell Biol</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>153</volume><issue>4</issue><spage>215</spage><epage>223</epage><pages>215-223</pages><issn>0948-6143</issn><eissn>1432-119X</eissn><abstract>Long bones of the appendicular skeleton are formed through endochondral ossification. Endochondral bone formation initiates with mesenchymal condensation, followed by the formation of a cartilage template which is replaced by bone. Fibroblast growth factor 9 (FGF9) regulates bone development.
Fgf9
−/−
mice exhibit disproportionate shortening of proximal skeletal elements.
Fgf9
missense mutations in mice and humans induce joint synostosis. Thus, FGF9 is critical for regulating bone length and joint formation. Conversely, mechanisms regulating bone width remain unclear. Here, we showed that the homozygous elbow knee synostosis (Eks) mutant mice harboring N143T mutation in
Fgf9
have wide long bones at birth. We investigated the cellular and molecular mechanisms underlying the widened prospective humerus in
Fgf9
Eks/Eks
embryos. Increased and expanded FGF signaling in concert with wider expression domain of
Fgf receptor 3
(
Fgfr3
) during chondrogenic condensation of the humerus led to widened cartilage, which resulted in the formation of wider prospective humeri in neonatal
Fgf9
Eks/Eks
mice. Increased and expanded FGF signaling during chondrogenic condensation led to increased density of chondrocytes of the humeri accompanied by increased proliferation of chondrocytes which express inappropriately higher levels of cyclin D1 in
Fgf9
Eks/Eks
embryos. The results suggest that FGF9 regulates the width of prospective long bones by controlling the width of chondrogenic condensation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32002646</pmid><doi>10.1007/s00418-020-01844-2</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2927-2937</orcidid><orcidid>https://orcid.org/0000-0001-8916-5618</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0948-6143 |
ispartof | Histochemistry and cell biology, 2020-04, Vol.153 (4), p.215-223 |
issn | 0948-6143 1432-119X |
language | eng |
recordid | cdi_proquest_miscellaneous_2350093116 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals Biochemistry Biomedical and Life Sciences Biomedicine Bone and Bones - metabolism Bone growth Bones Cartilage Cell Biology Chondrocytes Chondrocytes - metabolism Chondrogenesis Cyclin D1 Developmental Biology Dysostosis Elbow Elbow Joint - metabolism Embryos Endochondral bone Female Fibroblast growth factor 9 Fibroblast Growth Factor 9 - deficiency Fibroblast Growth Factor 9 - genetics Fibroblast Growth Factor 9 - metabolism Fibroblast growth factor receptor 9 Fibroblast growth factor receptors Fibroblasts Growth factors Humerus Male Mesenchyme Mice Mice, Knockout Mice, Mutant Strains Missense mutation Molecular modelling Mutation Neonates Original Paper Ossification Osteogenesis Skeleton |
title | Mouse fibroblast growth factor 9 N143T mutation leads to wide chondrogenic condensation of long bones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mouse%20fibroblast%20growth%20factor%209%20N143T%20mutation%20leads%20to%20wide%20chondrogenic%20condensation%20of%20long%20bones&rft.jtitle=Histochemistry%20and%20cell%20biology&rft.au=Harada,%20Masayo&rft.date=2020-04-01&rft.volume=153&rft.issue=4&rft.spage=215&rft.epage=223&rft.pages=215-223&rft.issn=0948-6143&rft.eissn=1432-119X&rft_id=info:doi/10.1007/s00418-020-01844-2&rft_dat=%3Cproquest_cross%3E2350093116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390052360&rft_id=info:pmid/32002646&rfr_iscdi=true |