Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains
Sucrose utilization has been established in Escherichia coli strains by expression of Mannheimia succiniciproducens β-fructofuranosidase (SacC), which hydrolyzes sucrose into glucose and fructose. Recombinant E. coli strains that can utilize sucrose were examined for their abilities to produce poly(...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2020-04, Vol.149, p.593-599 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 599 |
---|---|
container_issue | |
container_start_page | 593 |
container_title | International journal of biological macromolecules |
container_volume | 149 |
creator | Sohn, Yu Jung Kim, Hee Taek Baritugo, Kei-Anne Song, Hye Min Ryu, Mi Hee Kang, Kyoung Hee Jo, Seo Young Kim, Hoyong Kim, You Jin Choi, Jong-il Park, Su Kyeong Joo, Jeong Chan Park, Si Jae |
description | Sucrose utilization has been established in Escherichia coli strains by expression of Mannheimia succiniciproducens β-fructofuranosidase (SacC), which hydrolyzes sucrose into glucose and fructose. Recombinant E. coli strains that can utilize sucrose were examined for their abilities to produce poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] from sucrose. When recombinant E. coli strains expressing Ralstonia eutropha PhaCAB and SacC were cultured in MR medium containing 20 g/L of sucrose, all recombinant E. coli strains could produce P(3HB) from sucrose. Also, recombinant E. coli strains expressing Pseudomonas sp. MBEL 6-19 PhaC1437, Clostridium propionicum Pct540, R. eutropha PhaAB enzymes along with SacC could produce P(3HB-co-LA) from sucrose. Among the examined E. coli strains, recombinant E. coli XL1-Blue produced the highest contents of P(3HB) (53.60 ± 2.55 wt%) and P(3HB-co-LA) (29.44 ± 0.39 wt%). In the batch fermentations, recombinant E. coli XL1-Blue strains completely consumed 20 g/L of sucrose as the sole carbon source and supported the production of 3.76 g/L of P(3HB) and 1.82 g/L of P(3HB-co-LA) with 38.21 wt% P(3HB) and 20.88 wt% P(3HB-co-LA) contents, respectively. Recombinant E. coli strains developed in this study can be used to establish a cost-efficient biorefinery for the production of polyhydroxyalkanoates (PHAs) from sucrose, which is an abundant and inexpensive carbon source. |
doi_str_mv | 10.1016/j.ijbiomac.2020.01.254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2350090004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813019385502</els_id><sourcerecordid>2350090004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-962ff2c6697f277d1facb02502b48af37c4b0e3342a6e3b580f02cfbe0aa5c453</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi0Egi3wF5CPvSQd2_m8tSCgSEhc4GzZzpj1ksRbTxY1_75ZLXDtaaTR886reRi7EpALENWPTR42NsTBuFyChBxELsviiK1EU7cZAKhjtgJRiKwRCs7YN6LNsq1K0ZyyMyUBhGzaFXu9DpHmcVojBeLR823s5_Xcpfh3Nv2bGaOZkLhPceC0cykScjvzASdjYx-c6fuZ4_gaRsSEHb8lt8YU3DoY7haA05RMGOmCnXjTE15-zHP2cnf7fPM7e3y6f7j59Zg5VTVT1lbSe-mqqq29rOtOeOMsyBKkLRrjVe0KC6hUIU2FypYNeJDOWwRjSleU6px9P9zdpvhnhzTpIZDDvjcjxh1pqUqAdjFRLGh1QPdfUUKvtykMJs1agN5L1hv9KVnvJWsQepG8BK8-OnZ2wO4r9ml1AX4eAFw-fQ-YNLmAo8MuJHST7mL4X8c_-RyTyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350090004</pqid></control><display><type>article</type><title>Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Sohn, Yu Jung ; Kim, Hee Taek ; Baritugo, Kei-Anne ; Song, Hye Min ; Ryu, Mi Hee ; Kang, Kyoung Hee ; Jo, Seo Young ; Kim, Hoyong ; Kim, You Jin ; Choi, Jong-il ; Park, Su Kyeong ; Joo, Jeong Chan ; Park, Si Jae</creator><creatorcontrib>Sohn, Yu Jung ; Kim, Hee Taek ; Baritugo, Kei-Anne ; Song, Hye Min ; Ryu, Mi Hee ; Kang, Kyoung Hee ; Jo, Seo Young ; Kim, Hoyong ; Kim, You Jin ; Choi, Jong-il ; Park, Su Kyeong ; Joo, Jeong Chan ; Park, Si Jae</creatorcontrib><description>Sucrose utilization has been established in Escherichia coli strains by expression of Mannheimia succiniciproducens β-fructofuranosidase (SacC), which hydrolyzes sucrose into glucose and fructose. Recombinant E. coli strains that can utilize sucrose were examined for their abilities to produce poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] from sucrose. When recombinant E. coli strains expressing Ralstonia eutropha PhaCAB and SacC were cultured in MR medium containing 20 g/L of sucrose, all recombinant E. coli strains could produce P(3HB) from sucrose. Also, recombinant E. coli strains expressing Pseudomonas sp. MBEL 6-19 PhaC1437, Clostridium propionicum Pct540, R. eutropha PhaAB enzymes along with SacC could produce P(3HB-co-LA) from sucrose. Among the examined E. coli strains, recombinant E. coli XL1-Blue produced the highest contents of P(3HB) (53.60 ± 2.55 wt%) and P(3HB-co-LA) (29.44 ± 0.39 wt%). In the batch fermentations, recombinant E. coli XL1-Blue strains completely consumed 20 g/L of sucrose as the sole carbon source and supported the production of 3.76 g/L of P(3HB) and 1.82 g/L of P(3HB-co-LA) with 38.21 wt% P(3HB) and 20.88 wt% P(3HB-co-LA) contents, respectively. Recombinant E. coli strains developed in this study can be used to establish a cost-efficient biorefinery for the production of polyhydroxyalkanoates (PHAs) from sucrose, which is an abundant and inexpensive carbon source.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2020.01.254</identifier><identifier>PMID: 32001289</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>beta-Fructofuranosidase - chemistry ; beta-Fructofuranosidase - genetics ; Cupriavidus necator - enzymology ; Cupriavidus necator - genetics ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Hydroxybutyrates - metabolism ; Metabolic Engineering ; Pasteurellaceae - enzymology ; Pasteurellaceae - genetics ; Polyesters - metabolism ; Polyhydroxyalkanoates ; Polyhydroxyalkanoates - biosynthesis ; Polyhydroxyalkanoates - chemistry ; Polyhydroxyalkanoates - genetics ; Sucrose ; Sucrose - chemistry ; Sucrose - metabolism</subject><ispartof>International journal of biological macromolecules, 2020-04, Vol.149, p.593-599</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-962ff2c6697f277d1facb02502b48af37c4b0e3342a6e3b580f02cfbe0aa5c453</citedby><cites>FETCH-LOGICAL-c368t-962ff2c6697f277d1facb02502b48af37c4b0e3342a6e3b580f02cfbe0aa5c453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2020.01.254$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32001289$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sohn, Yu Jung</creatorcontrib><creatorcontrib>Kim, Hee Taek</creatorcontrib><creatorcontrib>Baritugo, Kei-Anne</creatorcontrib><creatorcontrib>Song, Hye Min</creatorcontrib><creatorcontrib>Ryu, Mi Hee</creatorcontrib><creatorcontrib>Kang, Kyoung Hee</creatorcontrib><creatorcontrib>Jo, Seo Young</creatorcontrib><creatorcontrib>Kim, Hoyong</creatorcontrib><creatorcontrib>Kim, You Jin</creatorcontrib><creatorcontrib>Choi, Jong-il</creatorcontrib><creatorcontrib>Park, Su Kyeong</creatorcontrib><creatorcontrib>Joo, Jeong Chan</creatorcontrib><creatorcontrib>Park, Si Jae</creatorcontrib><title>Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Sucrose utilization has been established in Escherichia coli strains by expression of Mannheimia succiniciproducens β-fructofuranosidase (SacC), which hydrolyzes sucrose into glucose and fructose. Recombinant E. coli strains that can utilize sucrose were examined for their abilities to produce poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] from sucrose. When recombinant E. coli strains expressing Ralstonia eutropha PhaCAB and SacC were cultured in MR medium containing 20 g/L of sucrose, all recombinant E. coli strains could produce P(3HB) from sucrose. Also, recombinant E. coli strains expressing Pseudomonas sp. MBEL 6-19 PhaC1437, Clostridium propionicum Pct540, R. eutropha PhaAB enzymes along with SacC could produce P(3HB-co-LA) from sucrose. Among the examined E. coli strains, recombinant E. coli XL1-Blue produced the highest contents of P(3HB) (53.60 ± 2.55 wt%) and P(3HB-co-LA) (29.44 ± 0.39 wt%). In the batch fermentations, recombinant E. coli XL1-Blue strains completely consumed 20 g/L of sucrose as the sole carbon source and supported the production of 3.76 g/L of P(3HB) and 1.82 g/L of P(3HB-co-LA) with 38.21 wt% P(3HB) and 20.88 wt% P(3HB-co-LA) contents, respectively. Recombinant E. coli strains developed in this study can be used to establish a cost-efficient biorefinery for the production of polyhydroxyalkanoates (PHAs) from sucrose, which is an abundant and inexpensive carbon source.</description><subject>beta-Fructofuranosidase - chemistry</subject><subject>beta-Fructofuranosidase - genetics</subject><subject>Cupriavidus necator - enzymology</subject><subject>Cupriavidus necator - genetics</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Hydroxybutyrates - metabolism</subject><subject>Metabolic Engineering</subject><subject>Pasteurellaceae - enzymology</subject><subject>Pasteurellaceae - genetics</subject><subject>Polyesters - metabolism</subject><subject>Polyhydroxyalkanoates</subject><subject>Polyhydroxyalkanoates - biosynthesis</subject><subject>Polyhydroxyalkanoates - chemistry</subject><subject>Polyhydroxyalkanoates - genetics</subject><subject>Sucrose</subject><subject>Sucrose - chemistry</subject><subject>Sucrose - metabolism</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P3DAQhi0Egi3wF5CPvSQd2_m8tSCgSEhc4GzZzpj1ksRbTxY1_75ZLXDtaaTR886reRi7EpALENWPTR42NsTBuFyChBxELsviiK1EU7cZAKhjtgJRiKwRCs7YN6LNsq1K0ZyyMyUBhGzaFXu9DpHmcVojBeLR823s5_Xcpfh3Nv2bGaOZkLhPceC0cykScjvzASdjYx-c6fuZ4_gaRsSEHb8lt8YU3DoY7haA05RMGOmCnXjTE15-zHP2cnf7fPM7e3y6f7j59Zg5VTVT1lbSe-mqqq29rOtOeOMsyBKkLRrjVe0KC6hUIU2FypYNeJDOWwRjSleU6px9P9zdpvhnhzTpIZDDvjcjxh1pqUqAdjFRLGh1QPdfUUKvtykMJs1agN5L1hv9KVnvJWsQepG8BK8-OnZ2wO4r9ml1AX4eAFw-fQ-YNLmAo8MuJHST7mL4X8c_-RyTyA</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Sohn, Yu Jung</creator><creator>Kim, Hee Taek</creator><creator>Baritugo, Kei-Anne</creator><creator>Song, Hye Min</creator><creator>Ryu, Mi Hee</creator><creator>Kang, Kyoung Hee</creator><creator>Jo, Seo Young</creator><creator>Kim, Hoyong</creator><creator>Kim, You Jin</creator><creator>Choi, Jong-il</creator><creator>Park, Su Kyeong</creator><creator>Joo, Jeong Chan</creator><creator>Park, Si Jae</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200415</creationdate><title>Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains</title><author>Sohn, Yu Jung ; Kim, Hee Taek ; Baritugo, Kei-Anne ; Song, Hye Min ; Ryu, Mi Hee ; Kang, Kyoung Hee ; Jo, Seo Young ; Kim, Hoyong ; Kim, You Jin ; Choi, Jong-il ; Park, Su Kyeong ; Joo, Jeong Chan ; Park, Si Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-962ff2c6697f277d1facb02502b48af37c4b0e3342a6e3b580f02cfbe0aa5c453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>beta-Fructofuranosidase - chemistry</topic><topic>beta-Fructofuranosidase - genetics</topic><topic>Cupriavidus necator - enzymology</topic><topic>Cupriavidus necator - genetics</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Hydroxybutyrates - metabolism</topic><topic>Metabolic Engineering</topic><topic>Pasteurellaceae - enzymology</topic><topic>Pasteurellaceae - genetics</topic><topic>Polyesters - metabolism</topic><topic>Polyhydroxyalkanoates</topic><topic>Polyhydroxyalkanoates - biosynthesis</topic><topic>Polyhydroxyalkanoates - chemistry</topic><topic>Polyhydroxyalkanoates - genetics</topic><topic>Sucrose</topic><topic>Sucrose - chemistry</topic><topic>Sucrose - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohn, Yu Jung</creatorcontrib><creatorcontrib>Kim, Hee Taek</creatorcontrib><creatorcontrib>Baritugo, Kei-Anne</creatorcontrib><creatorcontrib>Song, Hye Min</creatorcontrib><creatorcontrib>Ryu, Mi Hee</creatorcontrib><creatorcontrib>Kang, Kyoung Hee</creatorcontrib><creatorcontrib>Jo, Seo Young</creatorcontrib><creatorcontrib>Kim, Hoyong</creatorcontrib><creatorcontrib>Kim, You Jin</creatorcontrib><creatorcontrib>Choi, Jong-il</creatorcontrib><creatorcontrib>Park, Su Kyeong</creatorcontrib><creatorcontrib>Joo, Jeong Chan</creatorcontrib><creatorcontrib>Park, Si Jae</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohn, Yu Jung</au><au>Kim, Hee Taek</au><au>Baritugo, Kei-Anne</au><au>Song, Hye Min</au><au>Ryu, Mi Hee</au><au>Kang, Kyoung Hee</au><au>Jo, Seo Young</au><au>Kim, Hoyong</au><au>Kim, You Jin</au><au>Choi, Jong-il</au><au>Park, Su Kyeong</au><au>Joo, Jeong Chan</au><au>Park, Si Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2020-04-15</date><risdate>2020</risdate><volume>149</volume><spage>593</spage><epage>599</epage><pages>593-599</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Sucrose utilization has been established in Escherichia coli strains by expression of Mannheimia succiniciproducens β-fructofuranosidase (SacC), which hydrolyzes sucrose into glucose and fructose. Recombinant E. coli strains that can utilize sucrose were examined for their abilities to produce poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] from sucrose. When recombinant E. coli strains expressing Ralstonia eutropha PhaCAB and SacC were cultured in MR medium containing 20 g/L of sucrose, all recombinant E. coli strains could produce P(3HB) from sucrose. Also, recombinant E. coli strains expressing Pseudomonas sp. MBEL 6-19 PhaC1437, Clostridium propionicum Pct540, R. eutropha PhaAB enzymes along with SacC could produce P(3HB-co-LA) from sucrose. Among the examined E. coli strains, recombinant E. coli XL1-Blue produced the highest contents of P(3HB) (53.60 ± 2.55 wt%) and P(3HB-co-LA) (29.44 ± 0.39 wt%). In the batch fermentations, recombinant E. coli XL1-Blue strains completely consumed 20 g/L of sucrose as the sole carbon source and supported the production of 3.76 g/L of P(3HB) and 1.82 g/L of P(3HB-co-LA) with 38.21 wt% P(3HB) and 20.88 wt% P(3HB-co-LA) contents, respectively. Recombinant E. coli strains developed in this study can be used to establish a cost-efficient biorefinery for the production of polyhydroxyalkanoates (PHAs) from sucrose, which is an abundant and inexpensive carbon source.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32001289</pmid><doi>10.1016/j.ijbiomac.2020.01.254</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2020-04, Vol.149, p.593-599 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_2350090004 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | beta-Fructofuranosidase - chemistry beta-Fructofuranosidase - genetics Cupriavidus necator - enzymology Cupriavidus necator - genetics Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Hydroxybutyrates - metabolism Metabolic Engineering Pasteurellaceae - enzymology Pasteurellaceae - genetics Polyesters - metabolism Polyhydroxyalkanoates Polyhydroxyalkanoates - biosynthesis Polyhydroxyalkanoates - chemistry Polyhydroxyalkanoates - genetics Sucrose Sucrose - chemistry Sucrose - metabolism |
title | Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosynthesis%20of%20polyhydroxyalkanoates%20from%20sucrose%20by%20metabolically%20engineered%20Escherichia%20coli%20strains&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Sohn,%20Yu%20Jung&rft.date=2020-04-15&rft.volume=149&rft.spage=593&rft.epage=599&rft.pages=593-599&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2020.01.254&rft_dat=%3Cproquest_cross%3E2350090004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350090004&rft_id=info:pmid/32001289&rft_els_id=S0141813019385502&rfr_iscdi=true |