Substrate‐dependent transport mechanism in AcrB of multidrug resistant bacteria

The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram‐negative bacteria for their survival. Experimental results sugg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2020-07, Vol.88 (7), p.853-864
Hauptverfasser: Jewel, Yead, Van Dinh, Quyen, Liu, Jin, Dutta, Prashanta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 864
container_issue 7
container_start_page 853
container_title Proteins, structure, function, and bioinformatics
container_volume 88
creator Jewel, Yead
Van Dinh, Quyen
Liu, Jin
Dutta, Prashanta
description The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram‐negative bacteria for their survival. Experimental results suggest that AcrB, one of the key components of MDR system, undergoes large scale conformation changes during the pumping due to proton‐motive process. However, due to extremely short time scale, it is difficult to observe (experimentally) those changes in the AcrB, which might facilitate the pumping process. Molecular simulations can shed light to understand the conformational changes for transport of indole in AcrB. Examination of conformational changes using all‐atom simulation is, however, impractical. Here, we develop a hybrid coarse‐grained force field to study the conformational changes of AcrB in presence of indole in the porter domain of monomer II. Using the coarse‐grained force field, we investigated the conformational changes of AcrB for a number of model systems considering the effect of protonation in aspartic acid (Asp) residues Asp407 and Asp408 in the transmembrane domain of monomer II. Our results show that in the presence of indole, protonation of Asp408 or Asp407 residue causes conformational changes from binding state to extrusion state in monomer II, while remaining two monomers (I and III) approach access state in AcrB protein. We also observed that all three AcrB monomers prefer to go back to access state in the absence of indole. Steered molecular dynamics simulations were performed to demonstrate the feasibility of indole transport mechanism for protonated systems. Identification of indole transport pathway through AcrB can be very helpful in understanding the drug efflux mechanism used by the MDR bacteria.
doi_str_mv 10.1002/prot.25877
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2348810288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348810288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3937-89a1719a20448f1e6de9efed866f0fa5c8673a6128931b10d5e85b7c0a8126993</originalsourceid><addsrcrecordid>eNp9kMtKxTAQhoMoerxsfAApuBGhmmnaZrLUgzcQvK9D2k610ssxSRF3PoLP6JMYPerChTAwMHzzM_Mxtgl8DzhP9md28HtJhlIusAlwJWMOIl1kE44oY5FhtsJWnXvknOdK5MtsRYBSqBAn7OpmLJy3xtP761tFM-or6n0UJr2bDdZHHZUPpm9cFzV9dFDaw2ioo25sfVPZ8T6y5BrnTVgpTOnJNmadLdWmdbTx3dfY3fHR7fQ0Pr84OZsenMelUELGqAxIUCbhaYo1UF6RopoqzPOa1yYrMZfC5JCgElAArzLCrJAlNwhJrpRYYzvz3PD-00jO665xJbWt6WkYnU5Eigg8QQzo9h_0cRhtH67TSQqQogwVqN05VdrBOUu1ntmmM_ZFA9efovWnaP0lOsBb35Fj0VH1i_6YDQDMgeempZd_ovTl9cXtPPQDHmKJgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411487487</pqid></control><display><type>article</type><title>Substrate‐dependent transport mechanism in AcrB of multidrug resistant bacteria</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jewel, Yead ; Van Dinh, Quyen ; Liu, Jin ; Dutta, Prashanta</creator><creatorcontrib>Jewel, Yead ; Van Dinh, Quyen ; Liu, Jin ; Dutta, Prashanta</creatorcontrib><description>The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram‐negative bacteria for their survival. Experimental results suggest that AcrB, one of the key components of MDR system, undergoes large scale conformation changes during the pumping due to proton‐motive process. However, due to extremely short time scale, it is difficult to observe (experimentally) those changes in the AcrB, which might facilitate the pumping process. Molecular simulations can shed light to understand the conformational changes for transport of indole in AcrB. Examination of conformational changes using all‐atom simulation is, however, impractical. Here, we develop a hybrid coarse‐grained force field to study the conformational changes of AcrB in presence of indole in the porter domain of monomer II. Using the coarse‐grained force field, we investigated the conformational changes of AcrB for a number of model systems considering the effect of protonation in aspartic acid (Asp) residues Asp407 and Asp408 in the transmembrane domain of monomer II. Our results show that in the presence of indole, protonation of Asp408 or Asp407 residue causes conformational changes from binding state to extrusion state in monomer II, while remaining two monomers (I and III) approach access state in AcrB protein. We also observed that all three AcrB monomers prefer to go back to access state in the absence of indole. Steered molecular dynamics simulations were performed to demonstrate the feasibility of indole transport mechanism for protonated systems. Identification of indole transport pathway through AcrB can be very helpful in understanding the drug efflux mechanism used by the MDR bacteria.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.25877</identifier><identifier>PMID: 31998988</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>AcrB ; AcrB protein ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Aspartic acid ; Aspartic Acid - chemistry ; Aspartic Acid - metabolism ; Bacteria ; Bacterial diseases ; Binding Sites ; Biological Transport ; coarsegrained molecular simulation ; Computer simulation ; Crystallography, X-Ray ; Domains ; Drug resistance ; Drug Resistance, Multiple, Bacterial - genetics ; Efflux ; Escherichia coli - drug effects ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Extrusion ; Gram-negative bacteria ; indole ; Indoles ; Indoles - chemistry ; Indoles - metabolism ; Metabolic wastes ; Molecular Docking Simulation ; Molecular dynamics ; Molecular Dynamics Simulation ; Monomers ; Multidrug resistance ; Multidrug Resistance-Associated Proteins - chemistry ; Multidrug Resistance-Associated Proteins - genetics ; Multidrug Resistance-Associated Proteins - metabolism ; multidrug resistant bacteria ; Multidrug resistant organisms ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Protonation ; Protons ; Pumping ; Residues ; Substrate Specificity ; Substrates ; Thermodynamics</subject><ispartof>Proteins, structure, function, and bioinformatics, 2020-07, Vol.88 (7), p.853-864</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3937-89a1719a20448f1e6de9efed866f0fa5c8673a6128931b10d5e85b7c0a8126993</citedby><cites>FETCH-LOGICAL-c3937-89a1719a20448f1e6de9efed866f0fa5c8673a6128931b10d5e85b7c0a8126993</cites><orcidid>0000-0001-5082-3994 ; 0000-0002-0839-5153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.25877$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.25877$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31998988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jewel, Yead</creatorcontrib><creatorcontrib>Van Dinh, Quyen</creatorcontrib><creatorcontrib>Liu, Jin</creatorcontrib><creatorcontrib>Dutta, Prashanta</creatorcontrib><title>Substrate‐dependent transport mechanism in AcrB of multidrug resistant bacteria</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram‐negative bacteria for their survival. Experimental results suggest that AcrB, one of the key components of MDR system, undergoes large scale conformation changes during the pumping due to proton‐motive process. However, due to extremely short time scale, it is difficult to observe (experimentally) those changes in the AcrB, which might facilitate the pumping process. Molecular simulations can shed light to understand the conformational changes for transport of indole in AcrB. Examination of conformational changes using all‐atom simulation is, however, impractical. Here, we develop a hybrid coarse‐grained force field to study the conformational changes of AcrB in presence of indole in the porter domain of monomer II. Using the coarse‐grained force field, we investigated the conformational changes of AcrB for a number of model systems considering the effect of protonation in aspartic acid (Asp) residues Asp407 and Asp408 in the transmembrane domain of monomer II. Our results show that in the presence of indole, protonation of Asp408 or Asp407 residue causes conformational changes from binding state to extrusion state in monomer II, while remaining two monomers (I and III) approach access state in AcrB protein. We also observed that all three AcrB monomers prefer to go back to access state in the absence of indole. Steered molecular dynamics simulations were performed to demonstrate the feasibility of indole transport mechanism for protonated systems. Identification of indole transport pathway through AcrB can be very helpful in understanding the drug efflux mechanism used by the MDR bacteria.</description><subject>AcrB</subject><subject>AcrB protein</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Aspartic acid</subject><subject>Aspartic Acid - chemistry</subject><subject>Aspartic Acid - metabolism</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Binding Sites</subject><subject>Biological Transport</subject><subject>coarsegrained molecular simulation</subject><subject>Computer simulation</subject><subject>Crystallography, X-Ray</subject><subject>Domains</subject><subject>Drug resistance</subject><subject>Drug Resistance, Multiple, Bacterial - genetics</subject><subject>Efflux</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Extrusion</subject><subject>Gram-negative bacteria</subject><subject>indole</subject><subject>Indoles</subject><subject>Indoles - chemistry</subject><subject>Indoles - metabolism</subject><subject>Metabolic wastes</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Monomers</subject><subject>Multidrug resistance</subject><subject>Multidrug Resistance-Associated Proteins - chemistry</subject><subject>Multidrug Resistance-Associated Proteins - genetics</subject><subject>Multidrug Resistance-Associated Proteins - metabolism</subject><subject>multidrug resistant bacteria</subject><subject>Multidrug resistant organisms</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protonation</subject><subject>Protons</subject><subject>Pumping</subject><subject>Residues</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Thermodynamics</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxTAQhoMoerxsfAApuBGhmmnaZrLUgzcQvK9D2k610ssxSRF3PoLP6JMYPerChTAwMHzzM_Mxtgl8DzhP9md28HtJhlIusAlwJWMOIl1kE44oY5FhtsJWnXvknOdK5MtsRYBSqBAn7OpmLJy3xtP761tFM-or6n0UJr2bDdZHHZUPpm9cFzV9dFDaw2ioo25sfVPZ8T6y5BrnTVgpTOnJNmadLdWmdbTx3dfY3fHR7fQ0Pr84OZsenMelUELGqAxIUCbhaYo1UF6RopoqzPOa1yYrMZfC5JCgElAArzLCrJAlNwhJrpRYYzvz3PD-00jO665xJbWt6WkYnU5Eigg8QQzo9h_0cRhtH67TSQqQogwVqN05VdrBOUu1ntmmM_ZFA9efovWnaP0lOsBb35Fj0VH1i_6YDQDMgeempZd_ovTl9cXtPPQDHmKJgQ</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Jewel, Yead</creator><creator>Van Dinh, Quyen</creator><creator>Liu, Jin</creator><creator>Dutta, Prashanta</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5082-3994</orcidid><orcidid>https://orcid.org/0000-0002-0839-5153</orcidid></search><sort><creationdate>202007</creationdate><title>Substrate‐dependent transport mechanism in AcrB of multidrug resistant bacteria</title><author>Jewel, Yead ; Van Dinh, Quyen ; Liu, Jin ; Dutta, Prashanta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3937-89a1719a20448f1e6de9efed866f0fa5c8673a6128931b10d5e85b7c0a8126993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AcrB</topic><topic>AcrB protein</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Aspartic acid</topic><topic>Aspartic Acid - chemistry</topic><topic>Aspartic Acid - metabolism</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Binding Sites</topic><topic>Biological Transport</topic><topic>coarsegrained molecular simulation</topic><topic>Computer simulation</topic><topic>Crystallography, X-Ray</topic><topic>Domains</topic><topic>Drug resistance</topic><topic>Drug Resistance, Multiple, Bacterial - genetics</topic><topic>Efflux</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Extrusion</topic><topic>Gram-negative bacteria</topic><topic>indole</topic><topic>Indoles</topic><topic>Indoles - chemistry</topic><topic>Indoles - metabolism</topic><topic>Metabolic wastes</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Monomers</topic><topic>Multidrug resistance</topic><topic>Multidrug Resistance-Associated Proteins - chemistry</topic><topic>Multidrug Resistance-Associated Proteins - genetics</topic><topic>Multidrug Resistance-Associated Proteins - metabolism</topic><topic>multidrug resistant bacteria</topic><topic>Multidrug resistant organisms</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protonation</topic><topic>Protons</topic><topic>Pumping</topic><topic>Residues</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jewel, Yead</creatorcontrib><creatorcontrib>Van Dinh, Quyen</creatorcontrib><creatorcontrib>Liu, Jin</creatorcontrib><creatorcontrib>Dutta, Prashanta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jewel, Yead</au><au>Van Dinh, Quyen</au><au>Liu, Jin</au><au>Dutta, Prashanta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate‐dependent transport mechanism in AcrB of multidrug resistant bacteria</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2020-07</date><risdate>2020</risdate><volume>88</volume><issue>7</issue><spage>853</spage><epage>864</epage><pages>853-864</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram‐negative bacteria for their survival. Experimental results suggest that AcrB, one of the key components of MDR system, undergoes large scale conformation changes during the pumping due to proton‐motive process. However, due to extremely short time scale, it is difficult to observe (experimentally) those changes in the AcrB, which might facilitate the pumping process. Molecular simulations can shed light to understand the conformational changes for transport of indole in AcrB. Examination of conformational changes using all‐atom simulation is, however, impractical. Here, we develop a hybrid coarse‐grained force field to study the conformational changes of AcrB in presence of indole in the porter domain of monomer II. Using the coarse‐grained force field, we investigated the conformational changes of AcrB for a number of model systems considering the effect of protonation in aspartic acid (Asp) residues Asp407 and Asp408 in the transmembrane domain of monomer II. Our results show that in the presence of indole, protonation of Asp408 or Asp407 residue causes conformational changes from binding state to extrusion state in monomer II, while remaining two monomers (I and III) approach access state in AcrB protein. We also observed that all three AcrB monomers prefer to go back to access state in the absence of indole. Steered molecular dynamics simulations were performed to demonstrate the feasibility of indole transport mechanism for protonated systems. Identification of indole transport pathway through AcrB can be very helpful in understanding the drug efflux mechanism used by the MDR bacteria.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31998988</pmid><doi>10.1002/prot.25877</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5082-3994</orcidid><orcidid>https://orcid.org/0000-0002-0839-5153</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2020-07, Vol.88 (7), p.853-864
issn 0887-3585
1097-0134
language eng
recordid cdi_proquest_miscellaneous_2348810288
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects AcrB
AcrB protein
Anti-Bacterial Agents - pharmacology
Antibiotics
Aspartic acid
Aspartic Acid - chemistry
Aspartic Acid - metabolism
Bacteria
Bacterial diseases
Binding Sites
Biological Transport
coarsegrained molecular simulation
Computer simulation
Crystallography, X-Ray
Domains
Drug resistance
Drug Resistance, Multiple, Bacterial - genetics
Efflux
Escherichia coli - drug effects
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Extrusion
Gram-negative bacteria
indole
Indoles
Indoles - chemistry
Indoles - metabolism
Metabolic wastes
Molecular Docking Simulation
Molecular dynamics
Molecular Dynamics Simulation
Monomers
Multidrug resistance
Multidrug Resistance-Associated Proteins - chemistry
Multidrug Resistance-Associated Proteins - genetics
Multidrug Resistance-Associated Proteins - metabolism
multidrug resistant bacteria
Multidrug resistant organisms
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
Protonation
Protons
Pumping
Residues
Substrate Specificity
Substrates
Thermodynamics
title Substrate‐dependent transport mechanism in AcrB of multidrug resistant bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%E2%80%90dependent%20transport%20mechanism%20in%20AcrB%20of%20multidrug%20resistant%20bacteria&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Jewel,%20Yead&rft.date=2020-07&rft.volume=88&rft.issue=7&rft.spage=853&rft.epage=864&rft.pages=853-864&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.25877&rft_dat=%3Cproquest_cross%3E2348810288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411487487&rft_id=info:pmid/31998988&rfr_iscdi=true