Substrate‐dependent transport mechanism in AcrB of multidrug resistant bacteria
The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram‐negative bacteria for their survival. Experimental results sugg...
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2020-07, Vol.88 (7), p.853-864 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 864 |
---|---|
container_issue | 7 |
container_start_page | 853 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 88 |
creator | Jewel, Yead Van Dinh, Quyen Liu, Jin Dutta, Prashanta |
description | The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram‐negative bacteria for their survival. Experimental results suggest that AcrB, one of the key components of MDR system, undergoes large scale conformation changes during the pumping due to proton‐motive process. However, due to extremely short time scale, it is difficult to observe (experimentally) those changes in the AcrB, which might facilitate the pumping process. Molecular simulations can shed light to understand the conformational changes for transport of indole in AcrB. Examination of conformational changes using all‐atom simulation is, however, impractical. Here, we develop a hybrid coarse‐grained force field to study the conformational changes of AcrB in presence of indole in the porter domain of monomer II. Using the coarse‐grained force field, we investigated the conformational changes of AcrB for a number of model systems considering the effect of protonation in aspartic acid (Asp) residues Asp407 and Asp408 in the transmembrane domain of monomer II. Our results show that in the presence of indole, protonation of Asp408 or Asp407 residue causes conformational changes from binding state to extrusion state in monomer II, while remaining two monomers (I and III) approach access state in AcrB protein. We also observed that all three AcrB monomers prefer to go back to access state in the absence of indole. Steered molecular dynamics simulations were performed to demonstrate the feasibility of indole transport mechanism for protonated systems. Identification of indole transport pathway through AcrB can be very helpful in understanding the drug efflux mechanism used by the MDR bacteria. |
doi_str_mv | 10.1002/prot.25877 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2348810288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348810288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3937-89a1719a20448f1e6de9efed866f0fa5c8673a6128931b10d5e85b7c0a8126993</originalsourceid><addsrcrecordid>eNp9kMtKxTAQhoMoerxsfAApuBGhmmnaZrLUgzcQvK9D2k610ssxSRF3PoLP6JMYPerChTAwMHzzM_Mxtgl8DzhP9md28HtJhlIusAlwJWMOIl1kE44oY5FhtsJWnXvknOdK5MtsRYBSqBAn7OpmLJy3xtP761tFM-or6n0UJr2bDdZHHZUPpm9cFzV9dFDaw2ioo25sfVPZ8T6y5BrnTVgpTOnJNmadLdWmdbTx3dfY3fHR7fQ0Pr84OZsenMelUELGqAxIUCbhaYo1UF6RopoqzPOa1yYrMZfC5JCgElAArzLCrJAlNwhJrpRYYzvz3PD-00jO665xJbWt6WkYnU5Eigg8QQzo9h_0cRhtH67TSQqQogwVqN05VdrBOUu1ntmmM_ZFA9efovWnaP0lOsBb35Fj0VH1i_6YDQDMgeempZd_ovTl9cXtPPQDHmKJgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411487487</pqid></control><display><type>article</type><title>Substrate‐dependent transport mechanism in AcrB of multidrug resistant bacteria</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jewel, Yead ; Van Dinh, Quyen ; Liu, Jin ; Dutta, Prashanta</creator><creatorcontrib>Jewel, Yead ; Van Dinh, Quyen ; Liu, Jin ; Dutta, Prashanta</creatorcontrib><description>The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram‐negative bacteria for their survival. Experimental results suggest that AcrB, one of the key components of MDR system, undergoes large scale conformation changes during the pumping due to proton‐motive process. However, due to extremely short time scale, it is difficult to observe (experimentally) those changes in the AcrB, which might facilitate the pumping process. Molecular simulations can shed light to understand the conformational changes for transport of indole in AcrB. Examination of conformational changes using all‐atom simulation is, however, impractical. Here, we develop a hybrid coarse‐grained force field to study the conformational changes of AcrB in presence of indole in the porter domain of monomer II. Using the coarse‐grained force field, we investigated the conformational changes of AcrB for a number of model systems considering the effect of protonation in aspartic acid (Asp) residues Asp407 and Asp408 in the transmembrane domain of monomer II. Our results show that in the presence of indole, protonation of Asp408 or Asp407 residue causes conformational changes from binding state to extrusion state in monomer II, while remaining two monomers (I and III) approach access state in AcrB protein. We also observed that all three AcrB monomers prefer to go back to access state in the absence of indole. Steered molecular dynamics simulations were performed to demonstrate the feasibility of indole transport mechanism for protonated systems. Identification of indole transport pathway through AcrB can be very helpful in understanding the drug efflux mechanism used by the MDR bacteria.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.25877</identifier><identifier>PMID: 31998988</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>AcrB ; AcrB protein ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Aspartic acid ; Aspartic Acid - chemistry ; Aspartic Acid - metabolism ; Bacteria ; Bacterial diseases ; Binding Sites ; Biological Transport ; coarsegrained molecular simulation ; Computer simulation ; Crystallography, X-Ray ; Domains ; Drug resistance ; Drug Resistance, Multiple, Bacterial - genetics ; Efflux ; Escherichia coli - drug effects ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Extrusion ; Gram-negative bacteria ; indole ; Indoles ; Indoles - chemistry ; Indoles - metabolism ; Metabolic wastes ; Molecular Docking Simulation ; Molecular dynamics ; Molecular Dynamics Simulation ; Monomers ; Multidrug resistance ; Multidrug Resistance-Associated Proteins - chemistry ; Multidrug Resistance-Associated Proteins - genetics ; Multidrug Resistance-Associated Proteins - metabolism ; multidrug resistant bacteria ; Multidrug resistant organisms ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; Protonation ; Protons ; Pumping ; Residues ; Substrate Specificity ; Substrates ; Thermodynamics</subject><ispartof>Proteins, structure, function, and bioinformatics, 2020-07, Vol.88 (7), p.853-864</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3937-89a1719a20448f1e6de9efed866f0fa5c8673a6128931b10d5e85b7c0a8126993</citedby><cites>FETCH-LOGICAL-c3937-89a1719a20448f1e6de9efed866f0fa5c8673a6128931b10d5e85b7c0a8126993</cites><orcidid>0000-0001-5082-3994 ; 0000-0002-0839-5153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.25877$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.25877$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31998988$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jewel, Yead</creatorcontrib><creatorcontrib>Van Dinh, Quyen</creatorcontrib><creatorcontrib>Liu, Jin</creatorcontrib><creatorcontrib>Dutta, Prashanta</creatorcontrib><title>Substrate‐dependent transport mechanism in AcrB of multidrug resistant bacteria</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram‐negative bacteria for their survival. Experimental results suggest that AcrB, one of the key components of MDR system, undergoes large scale conformation changes during the pumping due to proton‐motive process. However, due to extremely short time scale, it is difficult to observe (experimentally) those changes in the AcrB, which might facilitate the pumping process. Molecular simulations can shed light to understand the conformational changes for transport of indole in AcrB. Examination of conformational changes using all‐atom simulation is, however, impractical. Here, we develop a hybrid coarse‐grained force field to study the conformational changes of AcrB in presence of indole in the porter domain of monomer II. Using the coarse‐grained force field, we investigated the conformational changes of AcrB for a number of model systems considering the effect of protonation in aspartic acid (Asp) residues Asp407 and Asp408 in the transmembrane domain of monomer II. Our results show that in the presence of indole, protonation of Asp408 or Asp407 residue causes conformational changes from binding state to extrusion state in monomer II, while remaining two monomers (I and III) approach access state in AcrB protein. We also observed that all three AcrB monomers prefer to go back to access state in the absence of indole. Steered molecular dynamics simulations were performed to demonstrate the feasibility of indole transport mechanism for protonated systems. Identification of indole transport pathway through AcrB can be very helpful in understanding the drug efflux mechanism used by the MDR bacteria.</description><subject>AcrB</subject><subject>AcrB protein</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Aspartic acid</subject><subject>Aspartic Acid - chemistry</subject><subject>Aspartic Acid - metabolism</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Binding Sites</subject><subject>Biological Transport</subject><subject>coarsegrained molecular simulation</subject><subject>Computer simulation</subject><subject>Crystallography, X-Ray</subject><subject>Domains</subject><subject>Drug resistance</subject><subject>Drug Resistance, Multiple, Bacterial - genetics</subject><subject>Efflux</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Extrusion</subject><subject>Gram-negative bacteria</subject><subject>indole</subject><subject>Indoles</subject><subject>Indoles - chemistry</subject><subject>Indoles - metabolism</subject><subject>Metabolic wastes</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Monomers</subject><subject>Multidrug resistance</subject><subject>Multidrug Resistance-Associated Proteins - chemistry</subject><subject>Multidrug Resistance-Associated Proteins - genetics</subject><subject>Multidrug Resistance-Associated Proteins - metabolism</subject><subject>multidrug resistant bacteria</subject><subject>Multidrug resistant organisms</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protonation</subject><subject>Protons</subject><subject>Pumping</subject><subject>Residues</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Thermodynamics</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxTAQhoMoerxsfAApuBGhmmnaZrLUgzcQvK9D2k610ssxSRF3PoLP6JMYPerChTAwMHzzM_Mxtgl8DzhP9md28HtJhlIusAlwJWMOIl1kE44oY5FhtsJWnXvknOdK5MtsRYBSqBAn7OpmLJy3xtP761tFM-or6n0UJr2bDdZHHZUPpm9cFzV9dFDaw2ioo25sfVPZ8T6y5BrnTVgpTOnJNmadLdWmdbTx3dfY3fHR7fQ0Pr84OZsenMelUELGqAxIUCbhaYo1UF6RopoqzPOa1yYrMZfC5JCgElAArzLCrJAlNwhJrpRYYzvz3PD-00jO665xJbWt6WkYnU5Eigg8QQzo9h_0cRhtH67TSQqQogwVqN05VdrBOUu1ntmmM_ZFA9efovWnaP0lOsBb35Fj0VH1i_6YDQDMgeempZd_ovTl9cXtPPQDHmKJgQ</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Jewel, Yead</creator><creator>Van Dinh, Quyen</creator><creator>Liu, Jin</creator><creator>Dutta, Prashanta</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5082-3994</orcidid><orcidid>https://orcid.org/0000-0002-0839-5153</orcidid></search><sort><creationdate>202007</creationdate><title>Substrate‐dependent transport mechanism in AcrB of multidrug resistant bacteria</title><author>Jewel, Yead ; Van Dinh, Quyen ; Liu, Jin ; Dutta, Prashanta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3937-89a1719a20448f1e6de9efed866f0fa5c8673a6128931b10d5e85b7c0a8126993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AcrB</topic><topic>AcrB protein</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Aspartic acid</topic><topic>Aspartic Acid - chemistry</topic><topic>Aspartic Acid - metabolism</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Binding Sites</topic><topic>Biological Transport</topic><topic>coarsegrained molecular simulation</topic><topic>Computer simulation</topic><topic>Crystallography, X-Ray</topic><topic>Domains</topic><topic>Drug resistance</topic><topic>Drug Resistance, Multiple, Bacterial - genetics</topic><topic>Efflux</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Extrusion</topic><topic>Gram-negative bacteria</topic><topic>indole</topic><topic>Indoles</topic><topic>Indoles - chemistry</topic><topic>Indoles - metabolism</topic><topic>Metabolic wastes</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Monomers</topic><topic>Multidrug resistance</topic><topic>Multidrug Resistance-Associated Proteins - chemistry</topic><topic>Multidrug Resistance-Associated Proteins - genetics</topic><topic>Multidrug Resistance-Associated Proteins - metabolism</topic><topic>multidrug resistant bacteria</topic><topic>Multidrug resistant organisms</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protonation</topic><topic>Protons</topic><topic>Pumping</topic><topic>Residues</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jewel, Yead</creatorcontrib><creatorcontrib>Van Dinh, Quyen</creatorcontrib><creatorcontrib>Liu, Jin</creatorcontrib><creatorcontrib>Dutta, Prashanta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jewel, Yead</au><au>Van Dinh, Quyen</au><au>Liu, Jin</au><au>Dutta, Prashanta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate‐dependent transport mechanism in AcrB of multidrug resistant bacteria</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2020-07</date><risdate>2020</risdate><volume>88</volume><issue>7</issue><spage>853</spage><epage>864</epage><pages>853-864</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>The multidrug resistance (MDR) system effectively expels antibiotics out of bacteria causing serious issues during bacterial infection. In addition to drug, indole, a common metabolic waste of bacteria, is expelled by MDR system of gram‐negative bacteria for their survival. Experimental results suggest that AcrB, one of the key components of MDR system, undergoes large scale conformation changes during the pumping due to proton‐motive process. However, due to extremely short time scale, it is difficult to observe (experimentally) those changes in the AcrB, which might facilitate the pumping process. Molecular simulations can shed light to understand the conformational changes for transport of indole in AcrB. Examination of conformational changes using all‐atom simulation is, however, impractical. Here, we develop a hybrid coarse‐grained force field to study the conformational changes of AcrB in presence of indole in the porter domain of monomer II. Using the coarse‐grained force field, we investigated the conformational changes of AcrB for a number of model systems considering the effect of protonation in aspartic acid (Asp) residues Asp407 and Asp408 in the transmembrane domain of monomer II. Our results show that in the presence of indole, protonation of Asp408 or Asp407 residue causes conformational changes from binding state to extrusion state in monomer II, while remaining two monomers (I and III) approach access state in AcrB protein. We also observed that all three AcrB monomers prefer to go back to access state in the absence of indole. Steered molecular dynamics simulations were performed to demonstrate the feasibility of indole transport mechanism for protonated systems. Identification of indole transport pathway through AcrB can be very helpful in understanding the drug efflux mechanism used by the MDR bacteria.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31998988</pmid><doi>10.1002/prot.25877</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5082-3994</orcidid><orcidid>https://orcid.org/0000-0002-0839-5153</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2020-07, Vol.88 (7), p.853-864 |
issn | 0887-3585 1097-0134 |
language | eng |
recordid | cdi_proquest_miscellaneous_2348810288 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | AcrB AcrB protein Anti-Bacterial Agents - pharmacology Antibiotics Aspartic acid Aspartic Acid - chemistry Aspartic Acid - metabolism Bacteria Bacterial diseases Binding Sites Biological Transport coarsegrained molecular simulation Computer simulation Crystallography, X-Ray Domains Drug resistance Drug Resistance, Multiple, Bacterial - genetics Efflux Escherichia coli - drug effects Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Extrusion Gram-negative bacteria indole Indoles Indoles - chemistry Indoles - metabolism Metabolic wastes Molecular Docking Simulation Molecular dynamics Molecular Dynamics Simulation Monomers Multidrug resistance Multidrug Resistance-Associated Proteins - chemistry Multidrug Resistance-Associated Proteins - genetics Multidrug Resistance-Associated Proteins - metabolism multidrug resistant bacteria Multidrug resistant organisms Protein Binding Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein Interaction Domains and Motifs Protonation Protons Pumping Residues Substrate Specificity Substrates Thermodynamics |
title | Substrate‐dependent transport mechanism in AcrB of multidrug resistant bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%E2%80%90dependent%20transport%20mechanism%20in%20AcrB%20of%20multidrug%20resistant%20bacteria&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Jewel,%20Yead&rft.date=2020-07&rft.volume=88&rft.issue=7&rft.spage=853&rft.epage=864&rft.pages=853-864&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.25877&rft_dat=%3Cproquest_cross%3E2348810288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2411487487&rft_id=info:pmid/31998988&rfr_iscdi=true |