Multicomponent Orbital-Optimized Perturbation Theory Methods: Approaching Coupled Cluster Accuracy at Lower Cost

Multicomponent quantum chemistry methods such as the nuclear-electronic orbital (NEO) method allow the consistent quantum mechanical treatment of electrons and nuclei. The development of computationally practical, accurate, and robust multicomponent wave function methods is challenging because of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-02, Vol.11 (4), p.1578-1583
Hauptverfasser: Pavošević, Fabijan, Rousseau, Benjamin J. G, Hammes-Schiffer, Sharon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1583
container_issue 4
container_start_page 1578
container_title The journal of physical chemistry letters
container_volume 11
creator Pavošević, Fabijan
Rousseau, Benjamin J. G
Hammes-Schiffer, Sharon
description Multicomponent quantum chemistry methods such as the nuclear-electronic orbital (NEO) method allow the consistent quantum mechanical treatment of electrons and nuclei. The development of computationally practical, accurate, and robust multicomponent wave function methods is challenging because of the importance of orbital relaxation effects. Herein the variational orbital-optimized coupled cluster with doubles (NEO-OOCCD) method and the orbital-optimized second-order Møller–Plesset perturbation theory (NEO-OOMP2) method with scaled-opposite-spin (SOS) versions are developed and applied to molecular systems in which a proton and all electrons are treated quantum mechanically. The results highlight the importance of orbital relaxation in multicomponent wave function methods. The NEO-SOS′-OOMP2 method, which scales the electron–proton correlation energy as well as the opposite-spin and same-spin components of the electronic correlation energy, is found to achieve nearly the same level of accuracy as the NEO-OOCCD method for proton densities, proton affinities, and optimized geometries. An advantage of the NEO-SOS′-OOMP2 method is that it can be implemented with N 4 scaling, where N is a measure of the system size. This method will enable future multicomponent wave function calculations of structures, energies, reaction paths, and dynamics for substantially larger chemical systems.
doi_str_mv 10.1021/acs.jpclett.0c00090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2348809177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348809177</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-116e9a11d1f17c161fd7d50aaa26bdd0243b2eefe90df8b6ba822165e3f5e81c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EolD4AiTkJZu0nqR5mF0V8ZJalUVZR449oamSOPghVL6eQAtixWpGo3vvzBxCroBNgIUwFdJOtr1s0LkJk4wxzo7IGfBZFqSQxcd_-hE5t3bLWMJZlp6SUQSccwjhjPRL37ha6rbXHXaOrkxZO9EEq97Vbf2Bij6jcd6UwtW6o-sNarOjS3Qbrewtnfe90UJu6u6V5tr3zWDIG28dGjqX0hshd1Q4utDvwyTX1l2Qk0o0Fi8PdUxe7u_W-WOwWD085fNFIKJZ7AKABLkAUFBBKiGBSqUqZkKIMCmVYuEsKkPECjlTVVYmpcjCEJIYoyrGDGQ0Jjf73OHAN4_WFW1tJTaN6FB7W4TRLMsYhzQdpNFeKo221mBV9KZuhdkVwIov1MWAujigLg6oB9f1YYEvW1S_nh-2g2C6F3y7tTfd8O-_kZ9Y3I_e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348809177</pqid></control><display><type>article</type><title>Multicomponent Orbital-Optimized Perturbation Theory Methods: Approaching Coupled Cluster Accuracy at Lower Cost</title><source>ACS Publications</source><creator>Pavošević, Fabijan ; Rousseau, Benjamin J. G ; Hammes-Schiffer, Sharon</creator><creatorcontrib>Pavošević, Fabijan ; Rousseau, Benjamin J. G ; Hammes-Schiffer, Sharon</creatorcontrib><description>Multicomponent quantum chemistry methods such as the nuclear-electronic orbital (NEO) method allow the consistent quantum mechanical treatment of electrons and nuclei. The development of computationally practical, accurate, and robust multicomponent wave function methods is challenging because of the importance of orbital relaxation effects. Herein the variational orbital-optimized coupled cluster with doubles (NEO-OOCCD) method and the orbital-optimized second-order Møller–Plesset perturbation theory (NEO-OOMP2) method with scaled-opposite-spin (SOS) versions are developed and applied to molecular systems in which a proton and all electrons are treated quantum mechanically. The results highlight the importance of orbital relaxation in multicomponent wave function methods. The NEO-SOS′-OOMP2 method, which scales the electron–proton correlation energy as well as the opposite-spin and same-spin components of the electronic correlation energy, is found to achieve nearly the same level of accuracy as the NEO-OOCCD method for proton densities, proton affinities, and optimized geometries. An advantage of the NEO-SOS′-OOMP2 method is that it can be implemented with N 4 scaling, where N is a measure of the system size. This method will enable future multicomponent wave function calculations of structures, energies, reaction paths, and dynamics for substantially larger chemical systems.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c00090</identifier><identifier>PMID: 31999121</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2020-02, Vol.11 (4), p.1578-1583</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-116e9a11d1f17c161fd7d50aaa26bdd0243b2eefe90df8b6ba822165e3f5e81c3</citedby><cites>FETCH-LOGICAL-a345t-116e9a11d1f17c161fd7d50aaa26bdd0243b2eefe90df8b6ba822165e3f5e81c3</cites><orcidid>0000-0002-3782-6995 ; 0000-0003-0892-776X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.0c00090$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c00090$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31999121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pavošević, Fabijan</creatorcontrib><creatorcontrib>Rousseau, Benjamin J. G</creatorcontrib><creatorcontrib>Hammes-Schiffer, Sharon</creatorcontrib><title>Multicomponent Orbital-Optimized Perturbation Theory Methods: Approaching Coupled Cluster Accuracy at Lower Cost</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Multicomponent quantum chemistry methods such as the nuclear-electronic orbital (NEO) method allow the consistent quantum mechanical treatment of electrons and nuclei. The development of computationally practical, accurate, and robust multicomponent wave function methods is challenging because of the importance of orbital relaxation effects. Herein the variational orbital-optimized coupled cluster with doubles (NEO-OOCCD) method and the orbital-optimized second-order Møller–Plesset perturbation theory (NEO-OOMP2) method with scaled-opposite-spin (SOS) versions are developed and applied to molecular systems in which a proton and all electrons are treated quantum mechanically. The results highlight the importance of orbital relaxation in multicomponent wave function methods. The NEO-SOS′-OOMP2 method, which scales the electron–proton correlation energy as well as the opposite-spin and same-spin components of the electronic correlation energy, is found to achieve nearly the same level of accuracy as the NEO-OOCCD method for proton densities, proton affinities, and optimized geometries. An advantage of the NEO-SOS′-OOMP2 method is that it can be implemented with N 4 scaling, where N is a measure of the system size. This method will enable future multicomponent wave function calculations of structures, energies, reaction paths, and dynamics for substantially larger chemical systems.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EolD4AiTkJZu0nqR5mF0V8ZJalUVZR449oamSOPghVL6eQAtixWpGo3vvzBxCroBNgIUwFdJOtr1s0LkJk4wxzo7IGfBZFqSQxcd_-hE5t3bLWMJZlp6SUQSccwjhjPRL37ha6rbXHXaOrkxZO9EEq97Vbf2Bij6jcd6UwtW6o-sNarOjS3Qbrewtnfe90UJu6u6V5tr3zWDIG28dGjqX0hshd1Q4utDvwyTX1l2Qk0o0Fi8PdUxe7u_W-WOwWD085fNFIKJZ7AKABLkAUFBBKiGBSqUqZkKIMCmVYuEsKkPECjlTVVYmpcjCEJIYoyrGDGQ0Jjf73OHAN4_WFW1tJTaN6FB7W4TRLMsYhzQdpNFeKo221mBV9KZuhdkVwIov1MWAujigLg6oB9f1YYEvW1S_nh-2g2C6F3y7tTfd8O-_kZ9Y3I_e</recordid><startdate>20200220</startdate><enddate>20200220</enddate><creator>Pavošević, Fabijan</creator><creator>Rousseau, Benjamin J. G</creator><creator>Hammes-Schiffer, Sharon</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3782-6995</orcidid><orcidid>https://orcid.org/0000-0003-0892-776X</orcidid></search><sort><creationdate>20200220</creationdate><title>Multicomponent Orbital-Optimized Perturbation Theory Methods: Approaching Coupled Cluster Accuracy at Lower Cost</title><author>Pavošević, Fabijan ; Rousseau, Benjamin J. G ; Hammes-Schiffer, Sharon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-116e9a11d1f17c161fd7d50aaa26bdd0243b2eefe90df8b6ba822165e3f5e81c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavošević, Fabijan</creatorcontrib><creatorcontrib>Rousseau, Benjamin J. G</creatorcontrib><creatorcontrib>Hammes-Schiffer, Sharon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavošević, Fabijan</au><au>Rousseau, Benjamin J. G</au><au>Hammes-Schiffer, Sharon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent Orbital-Optimized Perturbation Theory Methods: Approaching Coupled Cluster Accuracy at Lower Cost</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2020-02-20</date><risdate>2020</risdate><volume>11</volume><issue>4</issue><spage>1578</spage><epage>1583</epage><pages>1578-1583</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Multicomponent quantum chemistry methods such as the nuclear-electronic orbital (NEO) method allow the consistent quantum mechanical treatment of electrons and nuclei. The development of computationally practical, accurate, and robust multicomponent wave function methods is challenging because of the importance of orbital relaxation effects. Herein the variational orbital-optimized coupled cluster with doubles (NEO-OOCCD) method and the orbital-optimized second-order Møller–Plesset perturbation theory (NEO-OOMP2) method with scaled-opposite-spin (SOS) versions are developed and applied to molecular systems in which a proton and all electrons are treated quantum mechanically. The results highlight the importance of orbital relaxation in multicomponent wave function methods. The NEO-SOS′-OOMP2 method, which scales the electron–proton correlation energy as well as the opposite-spin and same-spin components of the electronic correlation energy, is found to achieve nearly the same level of accuracy as the NEO-OOCCD method for proton densities, proton affinities, and optimized geometries. An advantage of the NEO-SOS′-OOMP2 method is that it can be implemented with N 4 scaling, where N is a measure of the system size. This method will enable future multicomponent wave function calculations of structures, energies, reaction paths, and dynamics for substantially larger chemical systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31999121</pmid><doi>10.1021/acs.jpclett.0c00090</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3782-6995</orcidid><orcidid>https://orcid.org/0000-0003-0892-776X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2020-02, Vol.11 (4), p.1578-1583
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2348809177
source ACS Publications
title Multicomponent Orbital-Optimized Perturbation Theory Methods: Approaching Coupled Cluster Accuracy at Lower Cost
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20Orbital-Optimized%20Perturbation%20Theory%20Methods:%20Approaching%20Coupled%20Cluster%20Accuracy%20at%20Lower%20Cost&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Pavos%CC%8Cevic%CC%81,%20Fabijan&rft.date=2020-02-20&rft.volume=11&rft.issue=4&rft.spage=1578&rft.epage=1583&rft.pages=1578-1583&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c00090&rft_dat=%3Cproquest_cross%3E2348809177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348809177&rft_id=info:pmid/31999121&rfr_iscdi=true