Selective Phase Control of Dopant-Free Potassium Sodium Niobate Perovskites in Solution

As one of the perovskite families, potassium sodium niobates (K1–x Na x )­NbO3 (KNN) have been gaining tremendous attention due to their various functional properties which can be largely determined by their crystallographic phase and composition. However, a selective evolution of different phases f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2020-03, Vol.59 (5), p.3042-3052
Hauptverfasser: Park, Seonhwa, Peddigari, Mahesh, Kim, Jung Hwan, Kim, Eunae, Hwang, Geon-Tae, Kim, Jong-Woo, Ahn, Cheol-Woo, Choi, Jong-Jin, Hahn, Byung-Dong, Choi, Joon-Hwan, Yoon, Woon-Ha, Park, Dong-Soo, Park, Kwi-Il, Jeong, Chang Kyu, Lee, Jung Woo, Min, Yuho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3052
container_issue 5
container_start_page 3042
container_title Inorganic chemistry
container_volume 59
creator Park, Seonhwa
Peddigari, Mahesh
Kim, Jung Hwan
Kim, Eunae
Hwang, Geon-Tae
Kim, Jong-Woo
Ahn, Cheol-Woo
Choi, Jong-Jin
Hahn, Byung-Dong
Choi, Joon-Hwan
Yoon, Woon-Ha
Park, Dong-Soo
Park, Kwi-Il
Jeong, Chang Kyu
Lee, Jung Woo
Min, Yuho
description As one of the perovskite families, potassium sodium niobates (K1–x Na x )­NbO3 (KNN) have been gaining tremendous attention due to their various functional properties which can be largely determined by their crystallographic phase and composition. However, a selective evolution of different phases for KNN with controlled composition can be difficult to achieve, especially in solution chemical synthesis because of its strong tendency to stabilize into orthorhombic phase at conventional synthetic temperature. We herein developed a facile solution approach to control the phase and composition of dopant-free KNN particles selectively through the modification of reaction parameters. A conventional hydrothermal synthesis method yielded orthorhombic KNN particles, while the monoclinic phase, which has never been observed in a bulk counterpart, was kinetically generated by the compositional modification of an intermediate phase under a high-intensity ultrasound irradiation. Cubic KNN particles were stabilized when ethylene glycol was used as a co-solvent together with deionized water through bonding between ethylene glycol molecules and the surface of the KNN. Composite-structured piezoelectric harvesters were fabricated using each phase of KNN particles and the β-phase poly­(vinylidene fluoride-co-trifluoroethylene) polymer. Maximum output power was found for the harvester containing orthorhombic KNN particles. This facile synthetic methodology could pave a new pathway for fabricating numerous phase-controlled materials.
doi_str_mv 10.1021/acs.inorgchem.9b03385
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2348801049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348801049</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-635ec1c66bb1cb03c9ff120d800f378487e0fe0a70f16b164f225cfb0f80bac73</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMoun78CUqPXrrONG3aHmX9BFFBRW8lzU402jZrkgr-92bZ1aunGXjvzfB-jB0iTBEyPJHKT81g3at6o35at8B5VWywCRYZpAXCyyabAMQdhah32K737wBQ81xssx2OdV1wgRP2_EAdqWC-KLl_k56SmR2Cs11idXJmF3II6YWjKNogvTdjnzzY-XLcGtvKEAVy9st_mEA-MUNUuzEYO-yzLS07TwfruceeLs4fZ1fpzd3l9ez0JpU5liEVvCCFSoi2RRU7qFprzGBeAWheVnlVEmgCWYJG0aLIdZYVSregK2ilKvkeO17dXTj7OZIPTW-8oq6TA9nRNxnPqwoQ8jpai5VVOeu9I90snOml-24QmiXTJjJt_pg2a6Yxd7R-MbY9zf9SvxCjAVeGZf7djm6Ijf85-gMSw4gZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348801049</pqid></control><display><type>article</type><title>Selective Phase Control of Dopant-Free Potassium Sodium Niobate Perovskites in Solution</title><source>ACS Publications</source><creator>Park, Seonhwa ; Peddigari, Mahesh ; Kim, Jung Hwan ; Kim, Eunae ; Hwang, Geon-Tae ; Kim, Jong-Woo ; Ahn, Cheol-Woo ; Choi, Jong-Jin ; Hahn, Byung-Dong ; Choi, Joon-Hwan ; Yoon, Woon-Ha ; Park, Dong-Soo ; Park, Kwi-Il ; Jeong, Chang Kyu ; Lee, Jung Woo ; Min, Yuho</creator><creatorcontrib>Park, Seonhwa ; Peddigari, Mahesh ; Kim, Jung Hwan ; Kim, Eunae ; Hwang, Geon-Tae ; Kim, Jong-Woo ; Ahn, Cheol-Woo ; Choi, Jong-Jin ; Hahn, Byung-Dong ; Choi, Joon-Hwan ; Yoon, Woon-Ha ; Park, Dong-Soo ; Park, Kwi-Il ; Jeong, Chang Kyu ; Lee, Jung Woo ; Min, Yuho</creatorcontrib><description>As one of the perovskite families, potassium sodium niobates (K1–x Na x )­NbO3 (KNN) have been gaining tremendous attention due to their various functional properties which can be largely determined by their crystallographic phase and composition. However, a selective evolution of different phases for KNN with controlled composition can be difficult to achieve, especially in solution chemical synthesis because of its strong tendency to stabilize into orthorhombic phase at conventional synthetic temperature. We herein developed a facile solution approach to control the phase and composition of dopant-free KNN particles selectively through the modification of reaction parameters. A conventional hydrothermal synthesis method yielded orthorhombic KNN particles, while the monoclinic phase, which has never been observed in a bulk counterpart, was kinetically generated by the compositional modification of an intermediate phase under a high-intensity ultrasound irradiation. Cubic KNN particles were stabilized when ethylene glycol was used as a co-solvent together with deionized water through bonding between ethylene glycol molecules and the surface of the KNN. Composite-structured piezoelectric harvesters were fabricated using each phase of KNN particles and the β-phase poly­(vinylidene fluoride-co-trifluoroethylene) polymer. Maximum output power was found for the harvester containing orthorhombic KNN particles. This facile synthetic methodology could pave a new pathway for fabricating numerous phase-controlled materials.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.9b03385</identifier><identifier>PMID: 31995361</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2020-03, Vol.59 (5), p.3042-3052</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-635ec1c66bb1cb03c9ff120d800f378487e0fe0a70f16b164f225cfb0f80bac73</citedby><cites>FETCH-LOGICAL-a417t-635ec1c66bb1cb03c9ff120d800f378487e0fe0a70f16b164f225cfb0f80bac73</cites><orcidid>0000-0002-9140-6641 ; 0000-0001-5843-7609 ; 0000-0002-0784-4818 ; 0000-0003-4705-9248 ; 0000-0001-6151-3887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.9b03385$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.9b03385$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31995361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Seonhwa</creatorcontrib><creatorcontrib>Peddigari, Mahesh</creatorcontrib><creatorcontrib>Kim, Jung Hwan</creatorcontrib><creatorcontrib>Kim, Eunae</creatorcontrib><creatorcontrib>Hwang, Geon-Tae</creatorcontrib><creatorcontrib>Kim, Jong-Woo</creatorcontrib><creatorcontrib>Ahn, Cheol-Woo</creatorcontrib><creatorcontrib>Choi, Jong-Jin</creatorcontrib><creatorcontrib>Hahn, Byung-Dong</creatorcontrib><creatorcontrib>Choi, Joon-Hwan</creatorcontrib><creatorcontrib>Yoon, Woon-Ha</creatorcontrib><creatorcontrib>Park, Dong-Soo</creatorcontrib><creatorcontrib>Park, Kwi-Il</creatorcontrib><creatorcontrib>Jeong, Chang Kyu</creatorcontrib><creatorcontrib>Lee, Jung Woo</creatorcontrib><creatorcontrib>Min, Yuho</creatorcontrib><title>Selective Phase Control of Dopant-Free Potassium Sodium Niobate Perovskites in Solution</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>As one of the perovskite families, potassium sodium niobates (K1–x Na x )­NbO3 (KNN) have been gaining tremendous attention due to their various functional properties which can be largely determined by their crystallographic phase and composition. However, a selective evolution of different phases for KNN with controlled composition can be difficult to achieve, especially in solution chemical synthesis because of its strong tendency to stabilize into orthorhombic phase at conventional synthetic temperature. We herein developed a facile solution approach to control the phase and composition of dopant-free KNN particles selectively through the modification of reaction parameters. A conventional hydrothermal synthesis method yielded orthorhombic KNN particles, while the monoclinic phase, which has never been observed in a bulk counterpart, was kinetically generated by the compositional modification of an intermediate phase under a high-intensity ultrasound irradiation. Cubic KNN particles were stabilized when ethylene glycol was used as a co-solvent together with deionized water through bonding between ethylene glycol molecules and the surface of the KNN. Composite-structured piezoelectric harvesters were fabricated using each phase of KNN particles and the β-phase poly­(vinylidene fluoride-co-trifluoroethylene) polymer. Maximum output power was found for the harvester containing orthorhombic KNN particles. This facile synthetic methodology could pave a new pathway for fabricating numerous phase-controlled materials.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMoun78CUqPXrrONG3aHmX9BFFBRW8lzU402jZrkgr-92bZ1aunGXjvzfB-jB0iTBEyPJHKT81g3at6o35at8B5VWywCRYZpAXCyyabAMQdhah32K737wBQ81xssx2OdV1wgRP2_EAdqWC-KLl_k56SmR2Cs11idXJmF3II6YWjKNogvTdjnzzY-XLcGtvKEAVy9st_mEA-MUNUuzEYO-yzLS07TwfruceeLs4fZ1fpzd3l9ez0JpU5liEVvCCFSoi2RRU7qFprzGBeAWheVnlVEmgCWYJG0aLIdZYVSregK2ilKvkeO17dXTj7OZIPTW-8oq6TA9nRNxnPqwoQ8jpai5VVOeu9I90snOml-24QmiXTJjJt_pg2a6Yxd7R-MbY9zf9SvxCjAVeGZf7djm6Ijf85-gMSw4gZ</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Park, Seonhwa</creator><creator>Peddigari, Mahesh</creator><creator>Kim, Jung Hwan</creator><creator>Kim, Eunae</creator><creator>Hwang, Geon-Tae</creator><creator>Kim, Jong-Woo</creator><creator>Ahn, Cheol-Woo</creator><creator>Choi, Jong-Jin</creator><creator>Hahn, Byung-Dong</creator><creator>Choi, Joon-Hwan</creator><creator>Yoon, Woon-Ha</creator><creator>Park, Dong-Soo</creator><creator>Park, Kwi-Il</creator><creator>Jeong, Chang Kyu</creator><creator>Lee, Jung Woo</creator><creator>Min, Yuho</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9140-6641</orcidid><orcidid>https://orcid.org/0000-0001-5843-7609</orcidid><orcidid>https://orcid.org/0000-0002-0784-4818</orcidid><orcidid>https://orcid.org/0000-0003-4705-9248</orcidid><orcidid>https://orcid.org/0000-0001-6151-3887</orcidid></search><sort><creationdate>20200302</creationdate><title>Selective Phase Control of Dopant-Free Potassium Sodium Niobate Perovskites in Solution</title><author>Park, Seonhwa ; Peddigari, Mahesh ; Kim, Jung Hwan ; Kim, Eunae ; Hwang, Geon-Tae ; Kim, Jong-Woo ; Ahn, Cheol-Woo ; Choi, Jong-Jin ; Hahn, Byung-Dong ; Choi, Joon-Hwan ; Yoon, Woon-Ha ; Park, Dong-Soo ; Park, Kwi-Il ; Jeong, Chang Kyu ; Lee, Jung Woo ; Min, Yuho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-635ec1c66bb1cb03c9ff120d800f378487e0fe0a70f16b164f225cfb0f80bac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Seonhwa</creatorcontrib><creatorcontrib>Peddigari, Mahesh</creatorcontrib><creatorcontrib>Kim, Jung Hwan</creatorcontrib><creatorcontrib>Kim, Eunae</creatorcontrib><creatorcontrib>Hwang, Geon-Tae</creatorcontrib><creatorcontrib>Kim, Jong-Woo</creatorcontrib><creatorcontrib>Ahn, Cheol-Woo</creatorcontrib><creatorcontrib>Choi, Jong-Jin</creatorcontrib><creatorcontrib>Hahn, Byung-Dong</creatorcontrib><creatorcontrib>Choi, Joon-Hwan</creatorcontrib><creatorcontrib>Yoon, Woon-Ha</creatorcontrib><creatorcontrib>Park, Dong-Soo</creatorcontrib><creatorcontrib>Park, Kwi-Il</creatorcontrib><creatorcontrib>Jeong, Chang Kyu</creatorcontrib><creatorcontrib>Lee, Jung Woo</creatorcontrib><creatorcontrib>Min, Yuho</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Seonhwa</au><au>Peddigari, Mahesh</au><au>Kim, Jung Hwan</au><au>Kim, Eunae</au><au>Hwang, Geon-Tae</au><au>Kim, Jong-Woo</au><au>Ahn, Cheol-Woo</au><au>Choi, Jong-Jin</au><au>Hahn, Byung-Dong</au><au>Choi, Joon-Hwan</au><au>Yoon, Woon-Ha</au><au>Park, Dong-Soo</au><au>Park, Kwi-Il</au><au>Jeong, Chang Kyu</au><au>Lee, Jung Woo</au><au>Min, Yuho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Phase Control of Dopant-Free Potassium Sodium Niobate Perovskites in Solution</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2020-03-02</date><risdate>2020</risdate><volume>59</volume><issue>5</issue><spage>3042</spage><epage>3052</epage><pages>3042-3052</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>As one of the perovskite families, potassium sodium niobates (K1–x Na x )­NbO3 (KNN) have been gaining tremendous attention due to their various functional properties which can be largely determined by their crystallographic phase and composition. However, a selective evolution of different phases for KNN with controlled composition can be difficult to achieve, especially in solution chemical synthesis because of its strong tendency to stabilize into orthorhombic phase at conventional synthetic temperature. We herein developed a facile solution approach to control the phase and composition of dopant-free KNN particles selectively through the modification of reaction parameters. A conventional hydrothermal synthesis method yielded orthorhombic KNN particles, while the monoclinic phase, which has never been observed in a bulk counterpart, was kinetically generated by the compositional modification of an intermediate phase under a high-intensity ultrasound irradiation. Cubic KNN particles were stabilized when ethylene glycol was used as a co-solvent together with deionized water through bonding between ethylene glycol molecules and the surface of the KNN. Composite-structured piezoelectric harvesters were fabricated using each phase of KNN particles and the β-phase poly­(vinylidene fluoride-co-trifluoroethylene) polymer. Maximum output power was found for the harvester containing orthorhombic KNN particles. This facile synthetic methodology could pave a new pathway for fabricating numerous phase-controlled materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31995361</pmid><doi>10.1021/acs.inorgchem.9b03385</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9140-6641</orcidid><orcidid>https://orcid.org/0000-0001-5843-7609</orcidid><orcidid>https://orcid.org/0000-0002-0784-4818</orcidid><orcidid>https://orcid.org/0000-0003-4705-9248</orcidid><orcidid>https://orcid.org/0000-0001-6151-3887</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2020-03, Vol.59 (5), p.3042-3052
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_2348801049
source ACS Publications
title Selective Phase Control of Dopant-Free Potassium Sodium Niobate Perovskites in Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Phase%20Control%20of%20Dopant-Free%20Potassium%20Sodium%20Niobate%20Perovskites%20in%20Solution&rft.jtitle=Inorganic%20chemistry&rft.au=Park,%20Seonhwa&rft.date=2020-03-02&rft.volume=59&rft.issue=5&rft.spage=3042&rft.epage=3052&rft.pages=3042-3052&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.9b03385&rft_dat=%3Cproquest_cross%3E2348801049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2348801049&rft_id=info:pmid/31995361&rfr_iscdi=true