Numerical integration of the Thomas-Fermi equation from zero to infinity

The Thomas-Fermi equation is expanded in a series at both x = 0 and x = ∞. Forward numerical integration from x = 0 determines an initial slope of −1.5880710226. Backward integration from x = ∞ depends on one parameter. By fitting the backward and forward integrations near x = 30, the parameter is d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1982-01, Vol.47 (2), p.308-312
1. Verfasser: Krutter, Harry
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 2
container_start_page 308
container_title Journal of computational physics
container_volume 47
creator Krutter, Harry
description The Thomas-Fermi equation is expanded in a series at both x = 0 and x = ∞. Forward numerical integration from x = 0 determines an initial slope of −1.5880710226. Backward integration from x = ∞ depends on one parameter. By fitting the backward and forward integrations near x = 30, the parameter is determined and the numerical solution is obtained from zero to infinity with a high degree of accuracy.
doi_str_mv 10.1016/0021-9991(82)90083-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23486577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021999182900833</els_id><sourcerecordid>23486577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-1b5287470290af387d1d189f76b0cf5040717ebf4d64e48b080ce24e9088da03</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwBwyZEAyB59iJnQUJVRSQKli6W47zTI2SuLUTpPL1pAQxMr3hnnuldwi5pHBLgRZ3ABlNy7Kk1zK7KQEkS9kRmVEoIc0ELY7J7A85JWcxfsAI5VzOyPPr0GJwRjeJ63p8D7p3vku8TfoNJuuNb3VMlxhal-BumEIbfJt8YfBJ78eWdZ3r9-fkxOom4sXvnZP18nG9eE5Xb08vi4dVahgTfUqrPJOCC8hK0JZJUdOaytKKogJjc-AgqMDK8rrgyGUFEgxmHEuQstbA5uRqmt0Gvxsw9qp10WDT6A79EFXGuCxyIUaQT6AJPsaAVm2Da3XYKwrqYE0dlKiDEiUz9WNNsbF2P9Vw_OHTYVDROOwM1i6g6VXt3f8D39A2czM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23486577</pqid></control><display><type>article</type><title>Numerical integration of the Thomas-Fermi equation from zero to infinity</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Krutter, Harry</creator><creatorcontrib>Krutter, Harry</creatorcontrib><description>The Thomas-Fermi equation is expanded in a series at both x = 0 and x = ∞. Forward numerical integration from x = 0 determines an initial slope of −1.5880710226. Backward integration from x = ∞ depends on one parameter. By fitting the backward and forward integrations near x = 30, the parameter is determined and the numerical solution is obtained from zero to infinity with a high degree of accuracy.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/0021-9991(82)90083-3</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of computational physics, 1982-01, Vol.47 (2), p.308-312</ispartof><rights>1982</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-1b5287470290af387d1d189f76b0cf5040717ebf4d64e48b080ce24e9088da03</citedby><cites>FETCH-LOGICAL-c337t-1b5287470290af387d1d189f76b0cf5040717ebf4d64e48b080ce24e9088da03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-9991(82)90083-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Krutter, Harry</creatorcontrib><title>Numerical integration of the Thomas-Fermi equation from zero to infinity</title><title>Journal of computational physics</title><description>The Thomas-Fermi equation is expanded in a series at both x = 0 and x = ∞. Forward numerical integration from x = 0 determines an initial slope of −1.5880710226. Backward integration from x = ∞ depends on one parameter. By fitting the backward and forward integrations near x = 30, the parameter is determined and the numerical solution is obtained from zero to infinity with a high degree of accuracy.</description><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwBwyZEAyB59iJnQUJVRSQKli6W47zTI2SuLUTpPL1pAQxMr3hnnuldwi5pHBLgRZ3ABlNy7Kk1zK7KQEkS9kRmVEoIc0ELY7J7A85JWcxfsAI5VzOyPPr0GJwRjeJ63p8D7p3vku8TfoNJuuNb3VMlxhal-BumEIbfJt8YfBJ78eWdZ3r9-fkxOom4sXvnZP18nG9eE5Xb08vi4dVahgTfUqrPJOCC8hK0JZJUdOaytKKogJjc-AgqMDK8rrgyGUFEgxmHEuQstbA5uRqmt0Gvxsw9qp10WDT6A79EFXGuCxyIUaQT6AJPsaAVm2Da3XYKwrqYE0dlKiDEiUz9WNNsbF2P9Vw_OHTYVDROOwM1i6g6VXt3f8D39A2czM</recordid><startdate>19820101</startdate><enddate>19820101</enddate><creator>Krutter, Harry</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19820101</creationdate><title>Numerical integration of the Thomas-Fermi equation from zero to infinity</title><author>Krutter, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-1b5287470290af387d1d189f76b0cf5040717ebf4d64e48b080ce24e9088da03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krutter, Harry</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krutter, Harry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical integration of the Thomas-Fermi equation from zero to infinity</atitle><jtitle>Journal of computational physics</jtitle><date>1982-01-01</date><risdate>1982</risdate><volume>47</volume><issue>2</issue><spage>308</spage><epage>312</epage><pages>308-312</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The Thomas-Fermi equation is expanded in a series at both x = 0 and x = ∞. Forward numerical integration from x = 0 determines an initial slope of −1.5880710226. Backward integration from x = ∞ depends on one parameter. By fitting the backward and forward integrations near x = 30, the parameter is determined and the numerical solution is obtained from zero to infinity with a high degree of accuracy.</abstract><pub>Elsevier Inc</pub><doi>10.1016/0021-9991(82)90083-3</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 1982-01, Vol.47 (2), p.308-312
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_23486577
source Elsevier ScienceDirect Journals Complete - AutoHoldings
title Numerical integration of the Thomas-Fermi equation from zero to infinity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20integration%20of%20the%20Thomas-Fermi%20equation%20from%20zero%20to%20infinity&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Krutter,%20Harry&rft.date=1982-01-01&rft.volume=47&rft.issue=2&rft.spage=308&rft.epage=312&rft.pages=308-312&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/0021-9991(82)90083-3&rft_dat=%3Cproquest_cross%3E23486577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23486577&rft_id=info:pmid/&rft_els_id=0021999182900833&rfr_iscdi=true