Simultaneous melting and solidification of a columnar dendritic microstructure in a temperature gradient: Numerical modeling and experiments
. The microstructural evolution of a SCN-ACE alloy in a temperature gradient is studied by cellular automaton (CA) modeling and in situ experiments. The initially columnar dendrites gradually evolve to a completely solid region with a planar solid/liquid interface. The CA simulations and in situ obs...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2020, Vol.43 (1), p.5-5, Article 5 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 1 |
container_start_page | 5 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 43 |
creator | Xiang, Chongchen Zhang, Qingyu Sun, Dongke Zhang, Shunhu Zhu, Mingfang Rettenmayr, Markus |
description | .
The microstructural evolution of a SCN-ACE alloy in a temperature gradient is studied by cellular automaton (CA) modeling and
in situ
experiments. The initially columnar dendrites gradually evolve to a completely solid region with a planar solid/liquid interface. The CA simulations and
in situ
observations present the migration of secondary dendrite arms and liquid pockets due to temperature gradient zone melting (TGZM), and the movement of the interface between a mushy zone and a fully liquid zone. The CA simulations show that the interface movement toward the lower temperature region is caused by the increasing concentration of the fully liquid region. Through updating the concentration in the fully liquid zone to the initial concentration in the CA simulation for mimicking the efficient stirring in liquid, the movement of the interface between the mushy zone and the fully liquid zone is hindered. The simulated liquid fractions and mean concentrations throughout the mushy zone decrease with time, which agree well with the analytical predictions. The simulated concentrations in the resolidified mushy zone are not higher than the temperature-dependent solidus concentrations, implying that no supersaturation remains after the mushy zone fully solidifies.
Graphical abstract |
doi_str_mv | 10.1140/epje/i2020-11930-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2348231445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347667428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-bbb69fa909d2f2b09990ff988464ba0347c87fd8ea24785bb78e1138aa1520513</originalsourceid><addsrcrecordid>eNp9kcuKFDEUhgtRnHH0BVxIwI2bcnKrrsSdDN5g0IUK7kKqctKkyaXNBcZ38KFNd8-M4MJVDsn3_yfn_MPwnODXhHB8CfsdXDqKKR4JkQyP84PhnFBJRyGnHw_va07Ohiel7DDGXcYeD2eMSMkEm86H319daL7qCKkVFMBXF7dIR4NK8s4461ZdXYooWaTRmnwLUWdkIJrsqltRcGtOpea21pYBudixCmEPWR8vtlkbB7G-QZ9bgNztPArJgL_rAzeddaEj5enwyGpf4NnteTF8f__u29XH8frLh09Xb6_HlRNax2VZNtJqiaWhli5YSomtlULwDV80ZnxexWyNAE35LKZlmQUQwoTWZKJ4IuxieHXy3ef0s0GpKriygvenNSjKuKCMcD519OU_6C61HPvvDtS82cycik7RE3XYRclg1b6PpPMvRbA6ZKUOWaljVuqYlZq76MWtdVsCmHvJXTgdYCeg9Ke4hfy3939s_wDJx6Qz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347667428</pqid></control><display><type>article</type><title>Simultaneous melting and solidification of a columnar dendritic microstructure in a temperature gradient: Numerical modeling and experiments</title><source>Springer Nature - Complete Springer Journals</source><creator>Xiang, Chongchen ; Zhang, Qingyu ; Sun, Dongke ; Zhang, Shunhu ; Zhu, Mingfang ; Rettenmayr, Markus</creator><creatorcontrib>Xiang, Chongchen ; Zhang, Qingyu ; Sun, Dongke ; Zhang, Shunhu ; Zhu, Mingfang ; Rettenmayr, Markus</creatorcontrib><description>.
The microstructural evolution of a SCN-ACE alloy in a temperature gradient is studied by cellular automaton (CA) modeling and
in situ
experiments. The initially columnar dendrites gradually evolve to a completely solid region with a planar solid/liquid interface. The CA simulations and
in situ
observations present the migration of secondary dendrite arms and liquid pockets due to temperature gradient zone melting (TGZM), and the movement of the interface between a mushy zone and a fully liquid zone. The CA simulations show that the interface movement toward the lower temperature region is caused by the increasing concentration of the fully liquid region. Through updating the concentration in the fully liquid zone to the initial concentration in the CA simulation for mimicking the efficient stirring in liquid, the movement of the interface between the mushy zone and the fully liquid zone is hindered. The simulated liquid fractions and mean concentrations throughout the mushy zone decrease with time, which agree well with the analytical predictions. The simulated concentrations in the resolidified mushy zone are not higher than the temperature-dependent solidus concentrations, implying that no supersaturation remains after the mushy zone fully solidifies.
Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2020-11930-7</identifier><identifier>PMID: 31993835</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Branching Dynamics at the Mesoscopic Scale ; Casting ; Cellular automata ; Complex Fluids and Microfluidics ; Complex Systems ; Computer simulation ; Condensed matter physics ; Dendritic structure ; Microstructure ; Mushy zones ; Nanotechnology ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Soft and Granular Matter ; Solidification ; Solidus ; Supersaturation ; Surfaces and Interfaces ; Temperature dependence ; Temperature gradients ; Thin Films ; Zone melting</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2020, Vol.43 (1), p.5-5, Article 5</ispartof><rights>EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-bbb69fa909d2f2b09990ff988464ba0347c87fd8ea24785bb78e1138aa1520513</citedby><cites>FETCH-LOGICAL-c412t-bbb69fa909d2f2b09990ff988464ba0347c87fd8ea24785bb78e1138aa1520513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2020-11930-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2020-11930-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31993835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Chongchen</creatorcontrib><creatorcontrib>Zhang, Qingyu</creatorcontrib><creatorcontrib>Sun, Dongke</creatorcontrib><creatorcontrib>Zhang, Shunhu</creatorcontrib><creatorcontrib>Zhu, Mingfang</creatorcontrib><creatorcontrib>Rettenmayr, Markus</creatorcontrib><title>Simultaneous melting and solidification of a columnar dendritic microstructure in a temperature gradient: Numerical modeling and experiments</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>.
The microstructural evolution of a SCN-ACE alloy in a temperature gradient is studied by cellular automaton (CA) modeling and
in situ
experiments. The initially columnar dendrites gradually evolve to a completely solid region with a planar solid/liquid interface. The CA simulations and
in situ
observations present the migration of secondary dendrite arms and liquid pockets due to temperature gradient zone melting (TGZM), and the movement of the interface between a mushy zone and a fully liquid zone. The CA simulations show that the interface movement toward the lower temperature region is caused by the increasing concentration of the fully liquid region. Through updating the concentration in the fully liquid zone to the initial concentration in the CA simulation for mimicking the efficient stirring in liquid, the movement of the interface between the mushy zone and the fully liquid zone is hindered. The simulated liquid fractions and mean concentrations throughout the mushy zone decrease with time, which agree well with the analytical predictions. The simulated concentrations in the resolidified mushy zone are not higher than the temperature-dependent solidus concentrations, implying that no supersaturation remains after the mushy zone fully solidifies.
Graphical abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Branching Dynamics at the Mesoscopic Scale</subject><subject>Casting</subject><subject>Cellular automata</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Computer simulation</subject><subject>Condensed matter physics</subject><subject>Dendritic structure</subject><subject>Microstructure</subject><subject>Mushy zones</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Solidification</subject><subject>Solidus</subject><subject>Supersaturation</subject><subject>Surfaces and Interfaces</subject><subject>Temperature dependence</subject><subject>Temperature gradients</subject><subject>Thin Films</subject><subject>Zone melting</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcuKFDEUhgtRnHH0BVxIwI2bcnKrrsSdDN5g0IUK7kKqctKkyaXNBcZ38KFNd8-M4MJVDsn3_yfn_MPwnODXhHB8CfsdXDqKKR4JkQyP84PhnFBJRyGnHw_va07Ohiel7DDGXcYeD2eMSMkEm86H319daL7qCKkVFMBXF7dIR4NK8s4461ZdXYooWaTRmnwLUWdkIJrsqltRcGtOpea21pYBudixCmEPWR8vtlkbB7G-QZ9bgNztPArJgL_rAzeddaEj5enwyGpf4NnteTF8f__u29XH8frLh09Xb6_HlRNax2VZNtJqiaWhli5YSomtlULwDV80ZnxexWyNAE35LKZlmQUQwoTWZKJ4IuxieHXy3ef0s0GpKriygvenNSjKuKCMcD519OU_6C61HPvvDtS82cycik7RE3XYRclg1b6PpPMvRbA6ZKUOWaljVuqYlZq76MWtdVsCmHvJXTgdYCeg9Ke4hfy3939s_wDJx6Qz</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xiang, Chongchen</creator><creator>Zhang, Qingyu</creator><creator>Sun, Dongke</creator><creator>Zhang, Shunhu</creator><creator>Zhu, Mingfang</creator><creator>Rettenmayr, Markus</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2020</creationdate><title>Simultaneous melting and solidification of a columnar dendritic microstructure in a temperature gradient: Numerical modeling and experiments</title><author>Xiang, Chongchen ; Zhang, Qingyu ; Sun, Dongke ; Zhang, Shunhu ; Zhu, Mingfang ; Rettenmayr, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-bbb69fa909d2f2b09990ff988464ba0347c87fd8ea24785bb78e1138aa1520513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Branching Dynamics at the Mesoscopic Scale</topic><topic>Casting</topic><topic>Cellular automata</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Computer simulation</topic><topic>Condensed matter physics</topic><topic>Dendritic structure</topic><topic>Microstructure</topic><topic>Mushy zones</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Solidification</topic><topic>Solidus</topic><topic>Supersaturation</topic><topic>Surfaces and Interfaces</topic><topic>Temperature dependence</topic><topic>Temperature gradients</topic><topic>Thin Films</topic><topic>Zone melting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Chongchen</creatorcontrib><creatorcontrib>Zhang, Qingyu</creatorcontrib><creatorcontrib>Sun, Dongke</creatorcontrib><creatorcontrib>Zhang, Shunhu</creatorcontrib><creatorcontrib>Zhu, Mingfang</creatorcontrib><creatorcontrib>Rettenmayr, Markus</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Chongchen</au><au>Zhang, Qingyu</au><au>Sun, Dongke</au><au>Zhang, Shunhu</au><au>Zhu, Mingfang</au><au>Rettenmayr, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous melting and solidification of a columnar dendritic microstructure in a temperature gradient: Numerical modeling and experiments</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2020</date><risdate>2020</risdate><volume>43</volume><issue>1</issue><spage>5</spage><epage>5</epage><pages>5-5</pages><artnum>5</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>.
The microstructural evolution of a SCN-ACE alloy in a temperature gradient is studied by cellular automaton (CA) modeling and
in situ
experiments. The initially columnar dendrites gradually evolve to a completely solid region with a planar solid/liquid interface. The CA simulations and
in situ
observations present the migration of secondary dendrite arms and liquid pockets due to temperature gradient zone melting (TGZM), and the movement of the interface between a mushy zone and a fully liquid zone. The CA simulations show that the interface movement toward the lower temperature region is caused by the increasing concentration of the fully liquid region. Through updating the concentration in the fully liquid zone to the initial concentration in the CA simulation for mimicking the efficient stirring in liquid, the movement of the interface between the mushy zone and the fully liquid zone is hindered. The simulated liquid fractions and mean concentrations throughout the mushy zone decrease with time, which agree well with the analytical predictions. The simulated concentrations in the resolidified mushy zone are not higher than the temperature-dependent solidus concentrations, implying that no supersaturation remains after the mushy zone fully solidifies.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31993835</pmid><doi>10.1140/epje/i2020-11930-7</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2020, Vol.43 (1), p.5-5, Article 5 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_proquest_miscellaneous_2348231445 |
source | Springer Nature - Complete Springer Journals |
subjects | Biological and Medical Physics Biophysics Branching Dynamics at the Mesoscopic Scale Casting Cellular automata Complex Fluids and Microfluidics Complex Systems Computer simulation Condensed matter physics Dendritic structure Microstructure Mushy zones Nanotechnology Physics Physics and Astronomy Polymer Sciences Regular Article Soft and Granular Matter Solidification Solidus Supersaturation Surfaces and Interfaces Temperature dependence Temperature gradients Thin Films Zone melting |
title | Simultaneous melting and solidification of a columnar dendritic microstructure in a temperature gradient: Numerical modeling and experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20melting%20and%20solidification%20of%20a%20columnar%20dendritic%20microstructure%20in%20a%20temperature%20gradient:%20Numerical%20modeling%20and%20experiments&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Xiang,%20Chongchen&rft.date=2020&rft.volume=43&rft.issue=1&rft.spage=5&rft.epage=5&rft.pages=5-5&rft.artnum=5&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2020-11930-7&rft_dat=%3Cproquest_cross%3E2347667428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347667428&rft_id=info:pmid/31993835&rfr_iscdi=true |