Role of Low‐Density Lipoprotein in Early Vascular Aging Associated With Systemic Lupus Erythematosus

Objective Patients with systemic lupus erythematosus (SLE) often have atherosclerotic complications at a young age but normal low‐density lipoprotein (LDL) levels. This study was undertaken to investigate the role of LDL composition in promoting early vascular aging in SLE patients. Methods Plasma L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arthritis & rheumatology (Hoboken, N.J.) N.J.), 2020-06, Vol.72 (6), p.972-984
Hauptverfasser: Chan, Hua‐Chen, Chan, Hsiu‐Chuan, Liang, Chan‐Jung, Lee, Hsiang‐Chun, Su, Hung, Lee, An‐Sheng, Shiea, Jentaie, Tsai, Wen‐Chan, Ou, Tsan‐Teng, Wu, Cheng‐Chin, Chu, Chih‐Sheng, Dixon, Richard A., Ke, Liang‐Yin, Yen, Jeng‐Hsien, Chen, Chu‐Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 984
container_issue 6
container_start_page 972
container_title Arthritis & rheumatology (Hoboken, N.J.)
container_volume 72
creator Chan, Hua‐Chen
Chan, Hsiu‐Chuan
Liang, Chan‐Jung
Lee, Hsiang‐Chun
Su, Hung
Lee, An‐Sheng
Shiea, Jentaie
Tsai, Wen‐Chan
Ou, Tsan‐Teng
Wu, Cheng‐Chin
Chu, Chih‐Sheng
Dixon, Richard A.
Ke, Liang‐Yin
Yen, Jeng‐Hsien
Chen, Chu‐Huang
description Objective Patients with systemic lupus erythematosus (SLE) often have atherosclerotic complications at a young age but normal low‐density lipoprotein (LDL) levels. This study was undertaken to investigate the role of LDL composition in promoting early vascular aging in SLE patients. Methods Plasma LDL from 45 SLE patients (SLE‐LDL) and from 37 normal healthy controls (N‐LDL) was chromatographically divided into 5 subfractions (L1–L5), and the subfraction composition was analyzed. Correlations between subfraction levels and signs of early vascular aging were assessed. Mechanisms of lipid‐mediated endothelial dysfunction were explored using in vitro assays and experiments in apoE−/− mice. Results The L5 percentage was increased 3.4 times in the plasma of SLE patients compared with normal controls. This increased percentage of SLE‐L5 was positively correlated with the mean blood pressure (r = 0.27, P = 0.04), carotid intima‐media thickness (IMT) (right carotid IMT, r = 0.4, P = 0.004; left carotid IMT, r = 0.36, P = 0.01), pulse wave velocity (r = 0.29, P = 0.04), and blood levels of CD16+ monocytes (r = 0.35, P = 0.004) and CX3CL1 cytokines (r = 0.43, P < 0.001) in SLE patients. Matrix‐assisted laser desorption ionization–time‐of‐flight mass spectrometry analysis revealed that plasma levels of lysophosphatidylcholine (LPC) and platelet‐activating factor (PAF) were increased in SLE‐LDL and in the SLE‐L5 plasma subfraction. Injecting SLE‐LDL, SLE‐L5, or LPC into young, male apoE−/− mice caused increases in plasma CX3CL1 levels, aortic fatty‐streak areas, aortic vascular aging, and macrophage infiltration into the aortic wall, whereas injection of N‐LDL or SLE‐L1 had negligible effects (n = 3–8 mice per group). In vitro, SLE‐L5 lipid extracts induced increases in CX3CR1 and CD16 expression in human monocytes; synthetic PAF and LPC had similar effects. Furthermore, lipid extracts of SLE‐LDL and SLE‐L5 induced the expression of CX3CL1 and enhanced monocyte–endothelial cell adhesion in assays with bovine aortic endothelial cells. Conclusion An increase in plasma L5 levels, not total LDL concentration, may promote early vascular aging in SLE patients, leading to premature atherosclerosis.
doi_str_mv 10.1002/art.41213
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2348213285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407015580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3533-18d6a89b989da776dd4ace346b212c66cf180d33c08bfd89cd26d7bb0fd3d0d13</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMojowufAEJuNHFaC69pMtBxwsUBK_LkCbpGGmbMUkZuvMRfEafxOiMLgQPB85ZfPz8fADsY3SCESKnwoWTBBNMN8AOoSSbpASlmz8_LvAI7Hn_guIUOcpQug1GFBdFQgndAfWtbTS0NSzt8uPt_Vx33oQBlmZhF84GbToYdyZcM8BH4WXfCAenc9PN4dR7K40IWsEnE57h3eCDbo2EZb_oPZy5ITzrVgTre78LtmrReL23vmPwcDG7P7ualDeX12fTciJpSukEM5UJVlQFK5TI80ypREhNk6wimMgskzVmSFEqEatqxQqpSKbyqkK1ogopTMfgaJUby7_22gfeGi9104hO295zQhMWVRGWRvTwD_pie9fFdpwkKEc4TRmK1PGKks5673TNF860wg0cI_7ln0f__Nt_ZA_WiX3VavVL_tiOwOkKWJpGD_8n8ent_SryE4Scj-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407015580</pqid></control><display><type>article</type><title>Role of Low‐Density Lipoprotein in Early Vascular Aging Associated With Systemic Lupus Erythematosus</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Chan, Hua‐Chen ; Chan, Hsiu‐Chuan ; Liang, Chan‐Jung ; Lee, Hsiang‐Chun ; Su, Hung ; Lee, An‐Sheng ; Shiea, Jentaie ; Tsai, Wen‐Chan ; Ou, Tsan‐Teng ; Wu, Cheng‐Chin ; Chu, Chih‐Sheng ; Dixon, Richard A. ; Ke, Liang‐Yin ; Yen, Jeng‐Hsien ; Chen, Chu‐Huang</creator><creatorcontrib>Chan, Hua‐Chen ; Chan, Hsiu‐Chuan ; Liang, Chan‐Jung ; Lee, Hsiang‐Chun ; Su, Hung ; Lee, An‐Sheng ; Shiea, Jentaie ; Tsai, Wen‐Chan ; Ou, Tsan‐Teng ; Wu, Cheng‐Chin ; Chu, Chih‐Sheng ; Dixon, Richard A. ; Ke, Liang‐Yin ; Yen, Jeng‐Hsien ; Chen, Chu‐Huang</creatorcontrib><description>Objective Patients with systemic lupus erythematosus (SLE) often have atherosclerotic complications at a young age but normal low‐density lipoprotein (LDL) levels. This study was undertaken to investigate the role of LDL composition in promoting early vascular aging in SLE patients. Methods Plasma LDL from 45 SLE patients (SLE‐LDL) and from 37 normal healthy controls (N‐LDL) was chromatographically divided into 5 subfractions (L1–L5), and the subfraction composition was analyzed. Correlations between subfraction levels and signs of early vascular aging were assessed. Mechanisms of lipid‐mediated endothelial dysfunction were explored using in vitro assays and experiments in apoE−/− mice. Results The L5 percentage was increased 3.4 times in the plasma of SLE patients compared with normal controls. This increased percentage of SLE‐L5 was positively correlated with the mean blood pressure (r = 0.27, P = 0.04), carotid intima‐media thickness (IMT) (right carotid IMT, r = 0.4, P = 0.004; left carotid IMT, r = 0.36, P = 0.01), pulse wave velocity (r = 0.29, P = 0.04), and blood levels of CD16+ monocytes (r = 0.35, P = 0.004) and CX3CL1 cytokines (r = 0.43, P &lt; 0.001) in SLE patients. Matrix‐assisted laser desorption ionization–time‐of‐flight mass spectrometry analysis revealed that plasma levels of lysophosphatidylcholine (LPC) and platelet‐activating factor (PAF) were increased in SLE‐LDL and in the SLE‐L5 plasma subfraction. Injecting SLE‐LDL, SLE‐L5, or LPC into young, male apoE−/− mice caused increases in plasma CX3CL1 levels, aortic fatty‐streak areas, aortic vascular aging, and macrophage infiltration into the aortic wall, whereas injection of N‐LDL or SLE‐L1 had negligible effects (n = 3–8 mice per group). In vitro, SLE‐L5 lipid extracts induced increases in CX3CR1 and CD16 expression in human monocytes; synthetic PAF and LPC had similar effects. Furthermore, lipid extracts of SLE‐LDL and SLE‐L5 induced the expression of CX3CL1 and enhanced monocyte–endothelial cell adhesion in assays with bovine aortic endothelial cells. Conclusion An increase in plasma L5 levels, not total LDL concentration, may promote early vascular aging in SLE patients, leading to premature atherosclerosis.</description><identifier>ISSN: 2326-5191</identifier><identifier>EISSN: 2326-5205</identifier><identifier>DOI: 10.1002/art.41213</identifier><identifier>PMID: 31994323</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Aging ; Aorta ; Apolipoprotein E ; Arteriosclerosis ; Atherosclerosis ; Blood levels ; Blood pressure ; CD16 antigen ; Cell adhesion ; Cell adhesion &amp; migration ; Chronic conditions ; Complications ; Composition ; Correlation analysis ; CX3CR1 protein ; Cytokines ; Density ; Endothelial cells ; Ionization ; Lipids ; Low density lipoprotein ; Lupus ; Lysophosphatidylcholine ; Macrophages ; Mass spectrometry ; Mass spectroscopy ; Monocytes ; Plasma ; Plasma levels ; Platelet-activating factor ; Systemic lupus erythematosus ; Wave velocity</subject><ispartof>Arthritis &amp; rheumatology (Hoboken, N.J.), 2020-06, Vol.72 (6), p.972-984</ispartof><rights>2020, American College of Rheumatology</rights><rights>2020, American College of Rheumatology.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3533-18d6a89b989da776dd4ace346b212c66cf180d33c08bfd89cd26d7bb0fd3d0d13</citedby><cites>FETCH-LOGICAL-c3533-18d6a89b989da776dd4ace346b212c66cf180d33c08bfd89cd26d7bb0fd3d0d13</cites><orcidid>0000-0002-1509-7883 ; 0000-0001-8176-3269 ; 0000-0002-2547-0987 ; 0000-0001-7016-8392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fart.41213$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fart.41213$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31994323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, Hua‐Chen</creatorcontrib><creatorcontrib>Chan, Hsiu‐Chuan</creatorcontrib><creatorcontrib>Liang, Chan‐Jung</creatorcontrib><creatorcontrib>Lee, Hsiang‐Chun</creatorcontrib><creatorcontrib>Su, Hung</creatorcontrib><creatorcontrib>Lee, An‐Sheng</creatorcontrib><creatorcontrib>Shiea, Jentaie</creatorcontrib><creatorcontrib>Tsai, Wen‐Chan</creatorcontrib><creatorcontrib>Ou, Tsan‐Teng</creatorcontrib><creatorcontrib>Wu, Cheng‐Chin</creatorcontrib><creatorcontrib>Chu, Chih‐Sheng</creatorcontrib><creatorcontrib>Dixon, Richard A.</creatorcontrib><creatorcontrib>Ke, Liang‐Yin</creatorcontrib><creatorcontrib>Yen, Jeng‐Hsien</creatorcontrib><creatorcontrib>Chen, Chu‐Huang</creatorcontrib><title>Role of Low‐Density Lipoprotein in Early Vascular Aging Associated With Systemic Lupus Erythematosus</title><title>Arthritis &amp; rheumatology (Hoboken, N.J.)</title><addtitle>Arthritis Rheumatol</addtitle><description>Objective Patients with systemic lupus erythematosus (SLE) often have atherosclerotic complications at a young age but normal low‐density lipoprotein (LDL) levels. This study was undertaken to investigate the role of LDL composition in promoting early vascular aging in SLE patients. Methods Plasma LDL from 45 SLE patients (SLE‐LDL) and from 37 normal healthy controls (N‐LDL) was chromatographically divided into 5 subfractions (L1–L5), and the subfraction composition was analyzed. Correlations between subfraction levels and signs of early vascular aging were assessed. Mechanisms of lipid‐mediated endothelial dysfunction were explored using in vitro assays and experiments in apoE−/− mice. Results The L5 percentage was increased 3.4 times in the plasma of SLE patients compared with normal controls. This increased percentage of SLE‐L5 was positively correlated with the mean blood pressure (r = 0.27, P = 0.04), carotid intima‐media thickness (IMT) (right carotid IMT, r = 0.4, P = 0.004; left carotid IMT, r = 0.36, P = 0.01), pulse wave velocity (r = 0.29, P = 0.04), and blood levels of CD16+ monocytes (r = 0.35, P = 0.004) and CX3CL1 cytokines (r = 0.43, P &lt; 0.001) in SLE patients. Matrix‐assisted laser desorption ionization–time‐of‐flight mass spectrometry analysis revealed that plasma levels of lysophosphatidylcholine (LPC) and platelet‐activating factor (PAF) were increased in SLE‐LDL and in the SLE‐L5 plasma subfraction. Injecting SLE‐LDL, SLE‐L5, or LPC into young, male apoE−/− mice caused increases in plasma CX3CL1 levels, aortic fatty‐streak areas, aortic vascular aging, and macrophage infiltration into the aortic wall, whereas injection of N‐LDL or SLE‐L1 had negligible effects (n = 3–8 mice per group). In vitro, SLE‐L5 lipid extracts induced increases in CX3CR1 and CD16 expression in human monocytes; synthetic PAF and LPC had similar effects. Furthermore, lipid extracts of SLE‐LDL and SLE‐L5 induced the expression of CX3CL1 and enhanced monocyte–endothelial cell adhesion in assays with bovine aortic endothelial cells. Conclusion An increase in plasma L5 levels, not total LDL concentration, may promote early vascular aging in SLE patients, leading to premature atherosclerosis.</description><subject>Aging</subject><subject>Aorta</subject><subject>Apolipoprotein E</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Blood levels</subject><subject>Blood pressure</subject><subject>CD16 antigen</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Chronic conditions</subject><subject>Complications</subject><subject>Composition</subject><subject>Correlation analysis</subject><subject>CX3CR1 protein</subject><subject>Cytokines</subject><subject>Density</subject><subject>Endothelial cells</subject><subject>Ionization</subject><subject>Lipids</subject><subject>Low density lipoprotein</subject><subject>Lupus</subject><subject>Lysophosphatidylcholine</subject><subject>Macrophages</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Monocytes</subject><subject>Plasma</subject><subject>Plasma levels</subject><subject>Platelet-activating factor</subject><subject>Systemic lupus erythematosus</subject><subject>Wave velocity</subject><issn>2326-5191</issn><issn>2326-5205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMojowufAEJuNHFaC69pMtBxwsUBK_LkCbpGGmbMUkZuvMRfEafxOiMLgQPB85ZfPz8fADsY3SCESKnwoWTBBNMN8AOoSSbpASlmz8_LvAI7Hn_guIUOcpQug1GFBdFQgndAfWtbTS0NSzt8uPt_Vx33oQBlmZhF84GbToYdyZcM8BH4WXfCAenc9PN4dR7K40IWsEnE57h3eCDbo2EZb_oPZy5ITzrVgTre78LtmrReL23vmPwcDG7P7ualDeX12fTciJpSukEM5UJVlQFK5TI80ypREhNk6wimMgskzVmSFEqEatqxQqpSKbyqkK1ogopTMfgaJUby7_22gfeGi9104hO295zQhMWVRGWRvTwD_pie9fFdpwkKEc4TRmK1PGKks5673TNF860wg0cI_7ln0f__Nt_ZA_WiX3VavVL_tiOwOkKWJpGD_8n8ent_SryE4Scj-0</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Chan, Hua‐Chen</creator><creator>Chan, Hsiu‐Chuan</creator><creator>Liang, Chan‐Jung</creator><creator>Lee, Hsiang‐Chun</creator><creator>Su, Hung</creator><creator>Lee, An‐Sheng</creator><creator>Shiea, Jentaie</creator><creator>Tsai, Wen‐Chan</creator><creator>Ou, Tsan‐Teng</creator><creator>Wu, Cheng‐Chin</creator><creator>Chu, Chih‐Sheng</creator><creator>Dixon, Richard A.</creator><creator>Ke, Liang‐Yin</creator><creator>Yen, Jeng‐Hsien</creator><creator>Chen, Chu‐Huang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TM</scope><scope>7U7</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1509-7883</orcidid><orcidid>https://orcid.org/0000-0001-8176-3269</orcidid><orcidid>https://orcid.org/0000-0002-2547-0987</orcidid><orcidid>https://orcid.org/0000-0001-7016-8392</orcidid></search><sort><creationdate>202006</creationdate><title>Role of Low‐Density Lipoprotein in Early Vascular Aging Associated With Systemic Lupus Erythematosus</title><author>Chan, Hua‐Chen ; Chan, Hsiu‐Chuan ; Liang, Chan‐Jung ; Lee, Hsiang‐Chun ; Su, Hung ; Lee, An‐Sheng ; Shiea, Jentaie ; Tsai, Wen‐Chan ; Ou, Tsan‐Teng ; Wu, Cheng‐Chin ; Chu, Chih‐Sheng ; Dixon, Richard A. ; Ke, Liang‐Yin ; Yen, Jeng‐Hsien ; Chen, Chu‐Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3533-18d6a89b989da776dd4ace346b212c66cf180d33c08bfd89cd26d7bb0fd3d0d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging</topic><topic>Aorta</topic><topic>Apolipoprotein E</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Blood levels</topic><topic>Blood pressure</topic><topic>CD16 antigen</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Chronic conditions</topic><topic>Complications</topic><topic>Composition</topic><topic>Correlation analysis</topic><topic>CX3CR1 protein</topic><topic>Cytokines</topic><topic>Density</topic><topic>Endothelial cells</topic><topic>Ionization</topic><topic>Lipids</topic><topic>Low density lipoprotein</topic><topic>Lupus</topic><topic>Lysophosphatidylcholine</topic><topic>Macrophages</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Monocytes</topic><topic>Plasma</topic><topic>Plasma levels</topic><topic>Platelet-activating factor</topic><topic>Systemic lupus erythematosus</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Hua‐Chen</creatorcontrib><creatorcontrib>Chan, Hsiu‐Chuan</creatorcontrib><creatorcontrib>Liang, Chan‐Jung</creatorcontrib><creatorcontrib>Lee, Hsiang‐Chun</creatorcontrib><creatorcontrib>Su, Hung</creatorcontrib><creatorcontrib>Lee, An‐Sheng</creatorcontrib><creatorcontrib>Shiea, Jentaie</creatorcontrib><creatorcontrib>Tsai, Wen‐Chan</creatorcontrib><creatorcontrib>Ou, Tsan‐Teng</creatorcontrib><creatorcontrib>Wu, Cheng‐Chin</creatorcontrib><creatorcontrib>Chu, Chih‐Sheng</creatorcontrib><creatorcontrib>Dixon, Richard A.</creatorcontrib><creatorcontrib>Ke, Liang‐Yin</creatorcontrib><creatorcontrib>Yen, Jeng‐Hsien</creatorcontrib><creatorcontrib>Chen, Chu‐Huang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Arthritis &amp; rheumatology (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Hua‐Chen</au><au>Chan, Hsiu‐Chuan</au><au>Liang, Chan‐Jung</au><au>Lee, Hsiang‐Chun</au><au>Su, Hung</au><au>Lee, An‐Sheng</au><au>Shiea, Jentaie</au><au>Tsai, Wen‐Chan</au><au>Ou, Tsan‐Teng</au><au>Wu, Cheng‐Chin</au><au>Chu, Chih‐Sheng</au><au>Dixon, Richard A.</au><au>Ke, Liang‐Yin</au><au>Yen, Jeng‐Hsien</au><au>Chen, Chu‐Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Low‐Density Lipoprotein in Early Vascular Aging Associated With Systemic Lupus Erythematosus</atitle><jtitle>Arthritis &amp; rheumatology (Hoboken, N.J.)</jtitle><addtitle>Arthritis Rheumatol</addtitle><date>2020-06</date><risdate>2020</risdate><volume>72</volume><issue>6</issue><spage>972</spage><epage>984</epage><pages>972-984</pages><issn>2326-5191</issn><eissn>2326-5205</eissn><abstract>Objective Patients with systemic lupus erythematosus (SLE) often have atherosclerotic complications at a young age but normal low‐density lipoprotein (LDL) levels. This study was undertaken to investigate the role of LDL composition in promoting early vascular aging in SLE patients. Methods Plasma LDL from 45 SLE patients (SLE‐LDL) and from 37 normal healthy controls (N‐LDL) was chromatographically divided into 5 subfractions (L1–L5), and the subfraction composition was analyzed. Correlations between subfraction levels and signs of early vascular aging were assessed. Mechanisms of lipid‐mediated endothelial dysfunction were explored using in vitro assays and experiments in apoE−/− mice. Results The L5 percentage was increased 3.4 times in the plasma of SLE patients compared with normal controls. This increased percentage of SLE‐L5 was positively correlated with the mean blood pressure (r = 0.27, P = 0.04), carotid intima‐media thickness (IMT) (right carotid IMT, r = 0.4, P = 0.004; left carotid IMT, r = 0.36, P = 0.01), pulse wave velocity (r = 0.29, P = 0.04), and blood levels of CD16+ monocytes (r = 0.35, P = 0.004) and CX3CL1 cytokines (r = 0.43, P &lt; 0.001) in SLE patients. Matrix‐assisted laser desorption ionization–time‐of‐flight mass spectrometry analysis revealed that plasma levels of lysophosphatidylcholine (LPC) and platelet‐activating factor (PAF) were increased in SLE‐LDL and in the SLE‐L5 plasma subfraction. Injecting SLE‐LDL, SLE‐L5, or LPC into young, male apoE−/− mice caused increases in plasma CX3CL1 levels, aortic fatty‐streak areas, aortic vascular aging, and macrophage infiltration into the aortic wall, whereas injection of N‐LDL or SLE‐L1 had negligible effects (n = 3–8 mice per group). In vitro, SLE‐L5 lipid extracts induced increases in CX3CR1 and CD16 expression in human monocytes; synthetic PAF and LPC had similar effects. Furthermore, lipid extracts of SLE‐LDL and SLE‐L5 induced the expression of CX3CL1 and enhanced monocyte–endothelial cell adhesion in assays with bovine aortic endothelial cells. Conclusion An increase in plasma L5 levels, not total LDL concentration, may promote early vascular aging in SLE patients, leading to premature atherosclerosis.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31994323</pmid><doi>10.1002/art.41213</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1509-7883</orcidid><orcidid>https://orcid.org/0000-0001-8176-3269</orcidid><orcidid>https://orcid.org/0000-0002-2547-0987</orcidid><orcidid>https://orcid.org/0000-0001-7016-8392</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2326-5191
ispartof Arthritis & rheumatology (Hoboken, N.J.), 2020-06, Vol.72 (6), p.972-984
issn 2326-5191
2326-5205
language eng
recordid cdi_proquest_miscellaneous_2348213285
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Aging
Aorta
Apolipoprotein E
Arteriosclerosis
Atherosclerosis
Blood levels
Blood pressure
CD16 antigen
Cell adhesion
Cell adhesion & migration
Chronic conditions
Complications
Composition
Correlation analysis
CX3CR1 protein
Cytokines
Density
Endothelial cells
Ionization
Lipids
Low density lipoprotein
Lupus
Lysophosphatidylcholine
Macrophages
Mass spectrometry
Mass spectroscopy
Monocytes
Plasma
Plasma levels
Platelet-activating factor
Systemic lupus erythematosus
Wave velocity
title Role of Low‐Density Lipoprotein in Early Vascular Aging Associated With Systemic Lupus Erythematosus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Low%E2%80%90Density%20Lipoprotein%20in%20Early%20Vascular%20Aging%20Associated%20With%20Systemic%20Lupus%20Erythematosus&rft.jtitle=Arthritis%20&%20rheumatology%20(Hoboken,%20N.J.)&rft.au=Chan,%20Hua%E2%80%90Chen&rft.date=2020-06&rft.volume=72&rft.issue=6&rft.spage=972&rft.epage=984&rft.pages=972-984&rft.issn=2326-5191&rft.eissn=2326-5205&rft_id=info:doi/10.1002/art.41213&rft_dat=%3Cproquest_cross%3E2407015580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407015580&rft_id=info:pmid/31994323&rfr_iscdi=true