Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae
Xylitol is a five‐carbon sugar alcohol that has a variety of uses in the food and pharmaceutical industries. In xylose assimilating yeasts, NAD(P)H‐dependent xylose reductase (XR) catalyzes the reduction of xylose to xylitol. In the present study, XR with varying cofactor specificities was overexpre...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2020-05, Vol.36 (3), p.e2972-n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e2972 |
container_title | Biotechnology progress |
container_volume | 36 |
creator | Reshamwala, Shamlan M. S. Lali, Arvind M. |
description | Xylitol is a five‐carbon sugar alcohol that has a variety of uses in the food and pharmaceutical industries. In xylose assimilating yeasts, NAD(P)H‐dependent xylose reductase (XR) catalyzes the reduction of xylose to xylitol. In the present study, XR with varying cofactor specificities was overexpressed in Saccharomyces cerevisiae to screen for efficient xylitol production. Xylose consumption and xylitol yields were higher when NADPH‐dependent enzymes (Candida tropicalis XR and S. cerevisiae Gre3p aldose reductase) were expressed, indicating that heterologous enzymes can utilize the intracellular NADPH pool more efficiently than the NADH pool, where they may face competition from native enzymes. This was confirmed by overexpression of a NADH‐preferring C. tropicalis XR mutant, which led to decreased xylose consumption and lower xylitol yield. To increase intracellular NADPH availability for xylitol production, the promoter of the ZWF1 gene, coding for the first enzyme of the NADPH‐generating pentose phosphate pathway, was replaced with the constitutive GPD promoter in a strain expressing C. tropicalis XR. This change led to a ~12% increase in xylitol yield. Deletion of XYL2 and SOR1, whose gene products can use xylitol as substrate, did not further increase xylitol yield. Using wheat stalk hydrolysate as source of xylose, the constructed strain efficiently produced xylitol, demonstrating practical relevance of this approach. |
doi_str_mv | 10.1002/btpr.2972 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2347505467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347505467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3052-be049466faf3648f796484dad0050207c86da291f4b729e0c099f02fdd931abc3</originalsourceid><addsrcrecordid>eNp10LtOxDAQBVALgWB5FPwAikQDRWBsJ05cLsvykBAgHhWF5Tg2eJXEwU6A_XuyLFAg0cxMcXQ1ugjtYjjCAOS46Fp_RHhGVtAIpwRiBpSuolGepSzOOM030GYIMwDIgZF1tEEx54ApH6Gn6UdbOdvZ5jnqXnR0PT69vYha56rIOB99zCvbDXfrXdmrzrom6sPCeq1cXdhGNl10L5V6kd7Vc6VDpLTXbzZYqbfRmpFV0Dvfews9nk0fJhfx1c355WR8FSsKKYkLDQlPGDPSUJbkJuPDTEpZAqRAIFM5KyXh2CRFRrgGBZwbIKYsOcWyUHQLHSxzhy9fex06UdugdFXJRrs-CEKTLIU0YdlA9__Qmet9M3wnSIJpznLG2KAOl0p5F4LXRrTe1tLPBQaxaFwsGheLxge7953YF7Uuf-VPxQM4XoJ3W-n5_0ni5OH27ivyE3oFixE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413868666</pqid></control><display><type>article</type><title>Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae</title><source>Wiley Online Library</source><creator>Reshamwala, Shamlan M. S. ; Lali, Arvind M.</creator><creatorcontrib>Reshamwala, Shamlan M. S. ; Lali, Arvind M.</creatorcontrib><description>Xylitol is a five‐carbon sugar alcohol that has a variety of uses in the food and pharmaceutical industries. In xylose assimilating yeasts, NAD(P)H‐dependent xylose reductase (XR) catalyzes the reduction of xylose to xylitol. In the present study, XR with varying cofactor specificities was overexpressed in Saccharomyces cerevisiae to screen for efficient xylitol production. Xylose consumption and xylitol yields were higher when NADPH‐dependent enzymes (Candida tropicalis XR and S. cerevisiae Gre3p aldose reductase) were expressed, indicating that heterologous enzymes can utilize the intracellular NADPH pool more efficiently than the NADH pool, where they may face competition from native enzymes. This was confirmed by overexpression of a NADH‐preferring C. tropicalis XR mutant, which led to decreased xylose consumption and lower xylitol yield. To increase intracellular NADPH availability for xylitol production, the promoter of the ZWF1 gene, coding for the first enzyme of the NADPH‐generating pentose phosphate pathway, was replaced with the constitutive GPD promoter in a strain expressing C. tropicalis XR. This change led to a ~12% increase in xylitol yield. Deletion of XYL2 and SOR1, whose gene products can use xylitol as substrate, did not further increase xylitol yield. Using wheat stalk hydrolysate as source of xylose, the constructed strain efficiently produced xylitol, demonstrating practical relevance of this approach.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2972</identifier><identifier>PMID: 31990139</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Aldehyde reductase ; Crop yield ; Enzymes ; Food industry ; Gene deletion ; Intracellular ; NAD ; NADH ; NADP ; NADPH ; Nicotinamide adenine dinucleotide ; Pentose ; Pentose phosphate pathway ; Pharmaceutical industry ; Reductases ; Saccharomyces cerevisiae ; Substrates ; wheat stalk hydrolysate ; Xylitol ; Xylose ; Xylose reductase ; Yeast ; Yeasts ; ZWF1</subject><ispartof>Biotechnology progress, 2020-05, Vol.36 (3), p.e2972-n/a</ispartof><rights>2020 American Institute of Chemical Engineers</rights><rights>2020 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3052-be049466faf3648f796484dad0050207c86da291f4b729e0c099f02fdd931abc3</citedby><cites>FETCH-LOGICAL-c3052-be049466faf3648f796484dad0050207c86da291f4b729e0c099f02fdd931abc3</cites><orcidid>0000-0003-2261-6132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2972$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2972$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31990139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reshamwala, Shamlan M. S.</creatorcontrib><creatorcontrib>Lali, Arvind M.</creatorcontrib><title>Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>Xylitol is a five‐carbon sugar alcohol that has a variety of uses in the food and pharmaceutical industries. In xylose assimilating yeasts, NAD(P)H‐dependent xylose reductase (XR) catalyzes the reduction of xylose to xylitol. In the present study, XR with varying cofactor specificities was overexpressed in Saccharomyces cerevisiae to screen for efficient xylitol production. Xylose consumption and xylitol yields were higher when NADPH‐dependent enzymes (Candida tropicalis XR and S. cerevisiae Gre3p aldose reductase) were expressed, indicating that heterologous enzymes can utilize the intracellular NADPH pool more efficiently than the NADH pool, where they may face competition from native enzymes. This was confirmed by overexpression of a NADH‐preferring C. tropicalis XR mutant, which led to decreased xylose consumption and lower xylitol yield. To increase intracellular NADPH availability for xylitol production, the promoter of the ZWF1 gene, coding for the first enzyme of the NADPH‐generating pentose phosphate pathway, was replaced with the constitutive GPD promoter in a strain expressing C. tropicalis XR. This change led to a ~12% increase in xylitol yield. Deletion of XYL2 and SOR1, whose gene products can use xylitol as substrate, did not further increase xylitol yield. Using wheat stalk hydrolysate as source of xylose, the constructed strain efficiently produced xylitol, demonstrating practical relevance of this approach.</description><subject>Aldehyde reductase</subject><subject>Crop yield</subject><subject>Enzymes</subject><subject>Food industry</subject><subject>Gene deletion</subject><subject>Intracellular</subject><subject>NAD</subject><subject>NADH</subject><subject>NADP</subject><subject>NADPH</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Pentose</subject><subject>Pentose phosphate pathway</subject><subject>Pharmaceutical industry</subject><subject>Reductases</subject><subject>Saccharomyces cerevisiae</subject><subject>Substrates</subject><subject>wheat stalk hydrolysate</subject><subject>Xylitol</subject><subject>Xylose</subject><subject>Xylose reductase</subject><subject>Yeast</subject><subject>Yeasts</subject><subject>ZWF1</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10LtOxDAQBVALgWB5FPwAikQDRWBsJ05cLsvykBAgHhWF5Tg2eJXEwU6A_XuyLFAg0cxMcXQ1ugjtYjjCAOS46Fp_RHhGVtAIpwRiBpSuolGepSzOOM030GYIMwDIgZF1tEEx54ApH6Gn6UdbOdvZ5jnqXnR0PT69vYha56rIOB99zCvbDXfrXdmrzrom6sPCeq1cXdhGNl10L5V6kd7Vc6VDpLTXbzZYqbfRmpFV0Dvfews9nk0fJhfx1c355WR8FSsKKYkLDQlPGDPSUJbkJuPDTEpZAqRAIFM5KyXh2CRFRrgGBZwbIKYsOcWyUHQLHSxzhy9fex06UdugdFXJRrs-CEKTLIU0YdlA9__Qmet9M3wnSIJpznLG2KAOl0p5F4LXRrTe1tLPBQaxaFwsGheLxge7953YF7Uuf-VPxQM4XoJ3W-n5_0ni5OH27ivyE3oFixE</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Reshamwala, Shamlan M. S.</creator><creator>Lali, Arvind M.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2261-6132</orcidid></search><sort><creationdate>202005</creationdate><title>Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae</title><author>Reshamwala, Shamlan M. S. ; Lali, Arvind M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3052-be049466faf3648f796484dad0050207c86da291f4b729e0c099f02fdd931abc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aldehyde reductase</topic><topic>Crop yield</topic><topic>Enzymes</topic><topic>Food industry</topic><topic>Gene deletion</topic><topic>Intracellular</topic><topic>NAD</topic><topic>NADH</topic><topic>NADP</topic><topic>NADPH</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Pentose</topic><topic>Pentose phosphate pathway</topic><topic>Pharmaceutical industry</topic><topic>Reductases</topic><topic>Saccharomyces cerevisiae</topic><topic>Substrates</topic><topic>wheat stalk hydrolysate</topic><topic>Xylitol</topic><topic>Xylose</topic><topic>Xylose reductase</topic><topic>Yeast</topic><topic>Yeasts</topic><topic>ZWF1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reshamwala, Shamlan M. S.</creatorcontrib><creatorcontrib>Lali, Arvind M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reshamwala, Shamlan M. S.</au><au>Lali, Arvind M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2020-05</date><risdate>2020</risdate><volume>36</volume><issue>3</issue><spage>e2972</spage><epage>n/a</epage><pages>e2972-n/a</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Xylitol is a five‐carbon sugar alcohol that has a variety of uses in the food and pharmaceutical industries. In xylose assimilating yeasts, NAD(P)H‐dependent xylose reductase (XR) catalyzes the reduction of xylose to xylitol. In the present study, XR with varying cofactor specificities was overexpressed in Saccharomyces cerevisiae to screen for efficient xylitol production. Xylose consumption and xylitol yields were higher when NADPH‐dependent enzymes (Candida tropicalis XR and S. cerevisiae Gre3p aldose reductase) were expressed, indicating that heterologous enzymes can utilize the intracellular NADPH pool more efficiently than the NADH pool, where they may face competition from native enzymes. This was confirmed by overexpression of a NADH‐preferring C. tropicalis XR mutant, which led to decreased xylose consumption and lower xylitol yield. To increase intracellular NADPH availability for xylitol production, the promoter of the ZWF1 gene, coding for the first enzyme of the NADPH‐generating pentose phosphate pathway, was replaced with the constitutive GPD promoter in a strain expressing C. tropicalis XR. This change led to a ~12% increase in xylitol yield. Deletion of XYL2 and SOR1, whose gene products can use xylitol as substrate, did not further increase xylitol yield. Using wheat stalk hydrolysate as source of xylose, the constructed strain efficiently produced xylitol, demonstrating practical relevance of this approach.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31990139</pmid><doi>10.1002/btpr.2972</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2261-6132</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2020-05, Vol.36 (3), p.e2972-n/a |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_2347505467 |
source | Wiley Online Library |
subjects | Aldehyde reductase Crop yield Enzymes Food industry Gene deletion Intracellular NAD NADH NADP NADPH Nicotinamide adenine dinucleotide Pentose Pentose phosphate pathway Pharmaceutical industry Reductases Saccharomyces cerevisiae Substrates wheat stalk hydrolysate Xylitol Xylose Xylose reductase Yeast Yeasts ZWF1 |
title | Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20the%20NADPH%20pool%20for%20xylitol%20production%20using%20recombinant%20Saccharomyces%20cerevisiae&rft.jtitle=Biotechnology%20progress&rft.au=Reshamwala,%20Shamlan%20M.%20S.&rft.date=2020-05&rft.volume=36&rft.issue=3&rft.spage=e2972&rft.epage=n/a&rft.pages=e2972-n/a&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2972&rft_dat=%3Cproquest_cross%3E2347505467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413868666&rft_id=info:pmid/31990139&rfr_iscdi=true |