Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling

Daytime radiative coolers are used to pump excess heat from a target object into a cold exterior space without energy consumption. Radiative coolers have become attractive cooling options. In this study, a daytime radiative cooler was designed to have a selective emissive property of electromagnetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-02, Vol.12 (7), p.8073-8081
Hauptverfasser: Chae, Dongwoo, Kim, Mingeon, Jung, Pil-Hoon, Son, Soomin, Seo, Junyong, Liu, Yuting, Lee, Bong Jae, Lee, Heon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8081
container_issue 7
container_start_page 8073
container_title ACS applied materials & interfaces
container_volume 12
creator Chae, Dongwoo
Kim, Mingeon
Jung, Pil-Hoon
Son, Soomin
Seo, Junyong
Liu, Yuting
Lee, Bong Jae
Lee, Heon
description Daytime radiative coolers are used to pump excess heat from a target object into a cold exterior space without energy consumption. Radiative coolers have become attractive cooling options. In this study, a daytime radiative cooler was designed to have a selective emissive property of electromagnetic waves in the atmospheric transparency window of 8–13 μm and preserve low solar absorption for enhancing radiative cooling performance. The proposed daytime radiative cooler has a simple multilayer structure of inorganic materials, namely, Al2O3, Si3N4, and SiO2, and exhibits high emission in the 8–13 μm region. Through a particle swarm optimization method, which is based on an evolutionary algorithm, the stacking sequence and thickness of each layer were optimized to maximize emissions in the 8–13 μm region and minimize the cooling temperature. The average value of emissivity of the fabricated inorganic radiative cooler in the 8–13 μm range was 87%, and its average absorptivity in the solar spectral region (0.3–2.5 μm) was 5.2%. The fabricated inorganic radiative cooler was experimentally applied for daytime radiative cooling. The inorganic radiative cooler can reduce the temperature by up to 8.2 °C compared to the inner ambient temperature during the daytime under direct sunlight.
doi_str_mv 10.1021/acsami.9b16742
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2347504053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347504053</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-476fdcc3092449d3476dc41e443c6deb06a4e31f0144579cc1771eb4c700f0fb3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMobk6vHqVHETqTJk3NUefUwURw7hzS9HVkpO1MWqH_vdHO3Ty978Hv-3jvQ-iS4CnBCblV2qvKTEVOeMaSIzQmgrH4LkmT44NmbITOvN9izGmC01M0okQITDgfo_VqB7p1yto-WoEN2nxBtKgbt1G10fGD8lBEr51tjVU9uGhembYNs2xc9Kj61lQQvavCqF_jrGmsqTfn6KRU1sPFfk7Q-mn-MXuJl2_Pi9n9MlZU8DZmGS8LrSkW4UZR0LAXmhFgjGpeQI65YkBJiQljaSa0JllGIGc6w7jEZU4n6HrI3bnmswPfysp4DdaqGprOyyREppjhlAZ0OqDaNd47KOXOmUq5XhIsf6qUQ5VyX2UwXO2zu7yC4oD_dReAmwEIRrltOleHV_9L-waJYn5y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347504053</pqid></control><display><type>article</type><title>Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling</title><source>ACS Publications</source><creator>Chae, Dongwoo ; Kim, Mingeon ; Jung, Pil-Hoon ; Son, Soomin ; Seo, Junyong ; Liu, Yuting ; Lee, Bong Jae ; Lee, Heon</creator><creatorcontrib>Chae, Dongwoo ; Kim, Mingeon ; Jung, Pil-Hoon ; Son, Soomin ; Seo, Junyong ; Liu, Yuting ; Lee, Bong Jae ; Lee, Heon</creatorcontrib><description>Daytime radiative coolers are used to pump excess heat from a target object into a cold exterior space without energy consumption. Radiative coolers have become attractive cooling options. In this study, a daytime radiative cooler was designed to have a selective emissive property of electromagnetic waves in the atmospheric transparency window of 8–13 μm and preserve low solar absorption for enhancing radiative cooling performance. The proposed daytime radiative cooler has a simple multilayer structure of inorganic materials, namely, Al2O3, Si3N4, and SiO2, and exhibits high emission in the 8–13 μm region. Through a particle swarm optimization method, which is based on an evolutionary algorithm, the stacking sequence and thickness of each layer were optimized to maximize emissions in the 8–13 μm region and minimize the cooling temperature. The average value of emissivity of the fabricated inorganic radiative cooler in the 8–13 μm range was 87%, and its average absorptivity in the solar spectral region (0.3–2.5 μm) was 5.2%. The fabricated inorganic radiative cooler was experimentally applied for daytime radiative cooling. The inorganic radiative cooler can reduce the temperature by up to 8.2 °C compared to the inner ambient temperature during the daytime under direct sunlight.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b16742</identifier><identifier>PMID: 31990166</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-02, Vol.12 (7), p.8073-8081</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-476fdcc3092449d3476dc41e443c6deb06a4e31f0144579cc1771eb4c700f0fb3</citedby><cites>FETCH-LOGICAL-a396t-476fdcc3092449d3476dc41e443c6deb06a4e31f0144579cc1771eb4c700f0fb3</cites><orcidid>0000-0001-6635-1880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b16742$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b16742$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31990166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chae, Dongwoo</creatorcontrib><creatorcontrib>Kim, Mingeon</creatorcontrib><creatorcontrib>Jung, Pil-Hoon</creatorcontrib><creatorcontrib>Son, Soomin</creatorcontrib><creatorcontrib>Seo, Junyong</creatorcontrib><creatorcontrib>Liu, Yuting</creatorcontrib><creatorcontrib>Lee, Bong Jae</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><title>Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Daytime radiative coolers are used to pump excess heat from a target object into a cold exterior space without energy consumption. Radiative coolers have become attractive cooling options. In this study, a daytime radiative cooler was designed to have a selective emissive property of electromagnetic waves in the atmospheric transparency window of 8–13 μm and preserve low solar absorption for enhancing radiative cooling performance. The proposed daytime radiative cooler has a simple multilayer structure of inorganic materials, namely, Al2O3, Si3N4, and SiO2, and exhibits high emission in the 8–13 μm region. Through a particle swarm optimization method, which is based on an evolutionary algorithm, the stacking sequence and thickness of each layer were optimized to maximize emissions in the 8–13 μm region and minimize the cooling temperature. The average value of emissivity of the fabricated inorganic radiative cooler in the 8–13 μm range was 87%, and its average absorptivity in the solar spectral region (0.3–2.5 μm) was 5.2%. The fabricated inorganic radiative cooler was experimentally applied for daytime radiative cooling. The inorganic radiative cooler can reduce the temperature by up to 8.2 °C compared to the inner ambient temperature during the daytime under direct sunlight.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMobk6vHqVHETqTJk3NUefUwURw7hzS9HVkpO1MWqH_vdHO3Ty978Hv-3jvQ-iS4CnBCblV2qvKTEVOeMaSIzQmgrH4LkmT44NmbITOvN9izGmC01M0okQITDgfo_VqB7p1yto-WoEN2nxBtKgbt1G10fGD8lBEr51tjVU9uGhembYNs2xc9Kj61lQQvavCqF_jrGmsqTfn6KRU1sPFfk7Q-mn-MXuJl2_Pi9n9MlZU8DZmGS8LrSkW4UZR0LAXmhFgjGpeQI65YkBJiQljaSa0JllGIGc6w7jEZU4n6HrI3bnmswPfysp4DdaqGprOyyREppjhlAZ0OqDaNd47KOXOmUq5XhIsf6qUQ5VyX2UwXO2zu7yC4oD_dReAmwEIRrltOleHV_9L-waJYn5y</recordid><startdate>20200219</startdate><enddate>20200219</enddate><creator>Chae, Dongwoo</creator><creator>Kim, Mingeon</creator><creator>Jung, Pil-Hoon</creator><creator>Son, Soomin</creator><creator>Seo, Junyong</creator><creator>Liu, Yuting</creator><creator>Lee, Bong Jae</creator><creator>Lee, Heon</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6635-1880</orcidid></search><sort><creationdate>20200219</creationdate><title>Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling</title><author>Chae, Dongwoo ; Kim, Mingeon ; Jung, Pil-Hoon ; Son, Soomin ; Seo, Junyong ; Liu, Yuting ; Lee, Bong Jae ; Lee, Heon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-476fdcc3092449d3476dc41e443c6deb06a4e31f0144579cc1771eb4c700f0fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chae, Dongwoo</creatorcontrib><creatorcontrib>Kim, Mingeon</creatorcontrib><creatorcontrib>Jung, Pil-Hoon</creatorcontrib><creatorcontrib>Son, Soomin</creatorcontrib><creatorcontrib>Seo, Junyong</creatorcontrib><creatorcontrib>Liu, Yuting</creatorcontrib><creatorcontrib>Lee, Bong Jae</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chae, Dongwoo</au><au>Kim, Mingeon</au><au>Jung, Pil-Hoon</au><au>Son, Soomin</au><au>Seo, Junyong</au><au>Liu, Yuting</au><au>Lee, Bong Jae</au><au>Lee, Heon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-02-19</date><risdate>2020</risdate><volume>12</volume><issue>7</issue><spage>8073</spage><epage>8081</epage><pages>8073-8081</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Daytime radiative coolers are used to pump excess heat from a target object into a cold exterior space without energy consumption. Radiative coolers have become attractive cooling options. In this study, a daytime radiative cooler was designed to have a selective emissive property of electromagnetic waves in the atmospheric transparency window of 8–13 μm and preserve low solar absorption for enhancing radiative cooling performance. The proposed daytime radiative cooler has a simple multilayer structure of inorganic materials, namely, Al2O3, Si3N4, and SiO2, and exhibits high emission in the 8–13 μm region. Through a particle swarm optimization method, which is based on an evolutionary algorithm, the stacking sequence and thickness of each layer were optimized to maximize emissions in the 8–13 μm region and minimize the cooling temperature. The average value of emissivity of the fabricated inorganic radiative cooler in the 8–13 μm range was 87%, and its average absorptivity in the solar spectral region (0.3–2.5 μm) was 5.2%. The fabricated inorganic radiative cooler was experimentally applied for daytime radiative cooling. The inorganic radiative cooler can reduce the temperature by up to 8.2 °C compared to the inner ambient temperature during the daytime under direct sunlight.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31990166</pmid><doi>10.1021/acsami.9b16742</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6635-1880</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-02, Vol.12 (7), p.8073-8081
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2347504053
source ACS Publications
title Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectrally%20Selective%20Inorganic-Based%20Multilayer%20Emitter%20for%20Daytime%20Radiative%20Cooling&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chae,%20Dongwoo&rft.date=2020-02-19&rft.volume=12&rft.issue=7&rft.spage=8073&rft.epage=8081&rft.pages=8073-8081&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b16742&rft_dat=%3Cproquest_cross%3E2347504053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347504053&rft_id=info:pmid/31990166&rfr_iscdi=true