Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling
Daytime radiative coolers are used to pump excess heat from a target object into a cold exterior space without energy consumption. Radiative coolers have become attractive cooling options. In this study, a daytime radiative cooler was designed to have a selective emissive property of electromagnetic...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-02, Vol.12 (7), p.8073-8081 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8081 |
---|---|
container_issue | 7 |
container_start_page | 8073 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Chae, Dongwoo Kim, Mingeon Jung, Pil-Hoon Son, Soomin Seo, Junyong Liu, Yuting Lee, Bong Jae Lee, Heon |
description | Daytime radiative coolers are used to pump excess heat from a target object into a cold exterior space without energy consumption. Radiative coolers have become attractive cooling options. In this study, a daytime radiative cooler was designed to have a selective emissive property of electromagnetic waves in the atmospheric transparency window of 8–13 μm and preserve low solar absorption for enhancing radiative cooling performance. The proposed daytime radiative cooler has a simple multilayer structure of inorganic materials, namely, Al2O3, Si3N4, and SiO2, and exhibits high emission in the 8–13 μm region. Through a particle swarm optimization method, which is based on an evolutionary algorithm, the stacking sequence and thickness of each layer were optimized to maximize emissions in the 8–13 μm region and minimize the cooling temperature. The average value of emissivity of the fabricated inorganic radiative cooler in the 8–13 μm range was 87%, and its average absorptivity in the solar spectral region (0.3–2.5 μm) was 5.2%. The fabricated inorganic radiative cooler was experimentally applied for daytime radiative cooling. The inorganic radiative cooler can reduce the temperature by up to 8.2 °C compared to the inner ambient temperature during the daytime under direct sunlight. |
doi_str_mv | 10.1021/acsami.9b16742 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2347504053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347504053</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-476fdcc3092449d3476dc41e443c6deb06a4e31f0144579cc1771eb4c700f0fb3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMobk6vHqVHETqTJk3NUefUwURw7hzS9HVkpO1MWqH_vdHO3Ty978Hv-3jvQ-iS4CnBCblV2qvKTEVOeMaSIzQmgrH4LkmT44NmbITOvN9izGmC01M0okQITDgfo_VqB7p1yto-WoEN2nxBtKgbt1G10fGD8lBEr51tjVU9uGhembYNs2xc9Kj61lQQvavCqF_jrGmsqTfn6KRU1sPFfk7Q-mn-MXuJl2_Pi9n9MlZU8DZmGS8LrSkW4UZR0LAXmhFgjGpeQI65YkBJiQljaSa0JllGIGc6w7jEZU4n6HrI3bnmswPfysp4DdaqGprOyyREppjhlAZ0OqDaNd47KOXOmUq5XhIsf6qUQ5VyX2UwXO2zu7yC4oD_dReAmwEIRrltOleHV_9L-waJYn5y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347504053</pqid></control><display><type>article</type><title>Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling</title><source>ACS Publications</source><creator>Chae, Dongwoo ; Kim, Mingeon ; Jung, Pil-Hoon ; Son, Soomin ; Seo, Junyong ; Liu, Yuting ; Lee, Bong Jae ; Lee, Heon</creator><creatorcontrib>Chae, Dongwoo ; Kim, Mingeon ; Jung, Pil-Hoon ; Son, Soomin ; Seo, Junyong ; Liu, Yuting ; Lee, Bong Jae ; Lee, Heon</creatorcontrib><description>Daytime radiative coolers are used to pump excess heat from a target object into a cold exterior space without energy consumption. Radiative coolers have become attractive cooling options. In this study, a daytime radiative cooler was designed to have a selective emissive property of electromagnetic waves in the atmospheric transparency window of 8–13 μm and preserve low solar absorption for enhancing radiative cooling performance. The proposed daytime radiative cooler has a simple multilayer structure of inorganic materials, namely, Al2O3, Si3N4, and SiO2, and exhibits high emission in the 8–13 μm region. Through a particle swarm optimization method, which is based on an evolutionary algorithm, the stacking sequence and thickness of each layer were optimized to maximize emissions in the 8–13 μm region and minimize the cooling temperature. The average value of emissivity of the fabricated inorganic radiative cooler in the 8–13 μm range was 87%, and its average absorptivity in the solar spectral region (0.3–2.5 μm) was 5.2%. The fabricated inorganic radiative cooler was experimentally applied for daytime radiative cooling. The inorganic radiative cooler can reduce the temperature by up to 8.2 °C compared to the inner ambient temperature during the daytime under direct sunlight.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b16742</identifier><identifier>PMID: 31990166</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2020-02, Vol.12 (7), p.8073-8081</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-476fdcc3092449d3476dc41e443c6deb06a4e31f0144579cc1771eb4c700f0fb3</citedby><cites>FETCH-LOGICAL-a396t-476fdcc3092449d3476dc41e443c6deb06a4e31f0144579cc1771eb4c700f0fb3</cites><orcidid>0000-0001-6635-1880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b16742$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b16742$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31990166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chae, Dongwoo</creatorcontrib><creatorcontrib>Kim, Mingeon</creatorcontrib><creatorcontrib>Jung, Pil-Hoon</creatorcontrib><creatorcontrib>Son, Soomin</creatorcontrib><creatorcontrib>Seo, Junyong</creatorcontrib><creatorcontrib>Liu, Yuting</creatorcontrib><creatorcontrib>Lee, Bong Jae</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><title>Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Daytime radiative coolers are used to pump excess heat from a target object into a cold exterior space without energy consumption. Radiative coolers have become attractive cooling options. In this study, a daytime radiative cooler was designed to have a selective emissive property of electromagnetic waves in the atmospheric transparency window of 8–13 μm and preserve low solar absorption for enhancing radiative cooling performance. The proposed daytime radiative cooler has a simple multilayer structure of inorganic materials, namely, Al2O3, Si3N4, and SiO2, and exhibits high emission in the 8–13 μm region. Through a particle swarm optimization method, which is based on an evolutionary algorithm, the stacking sequence and thickness of each layer were optimized to maximize emissions in the 8–13 μm region and minimize the cooling temperature. The average value of emissivity of the fabricated inorganic radiative cooler in the 8–13 μm range was 87%, and its average absorptivity in the solar spectral region (0.3–2.5 μm) was 5.2%. The fabricated inorganic radiative cooler was experimentally applied for daytime radiative cooling. The inorganic radiative cooler can reduce the temperature by up to 8.2 °C compared to the inner ambient temperature during the daytime under direct sunlight.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMobk6vHqVHETqTJk3NUefUwURw7hzS9HVkpO1MWqH_vdHO3Ty978Hv-3jvQ-iS4CnBCblV2qvKTEVOeMaSIzQmgrH4LkmT44NmbITOvN9izGmC01M0okQITDgfo_VqB7p1yto-WoEN2nxBtKgbt1G10fGD8lBEr51tjVU9uGhembYNs2xc9Kj61lQQvavCqF_jrGmsqTfn6KRU1sPFfk7Q-mn-MXuJl2_Pi9n9MlZU8DZmGS8LrSkW4UZR0LAXmhFgjGpeQI65YkBJiQljaSa0JllGIGc6w7jEZU4n6HrI3bnmswPfysp4DdaqGprOyyREppjhlAZ0OqDaNd47KOXOmUq5XhIsf6qUQ5VyX2UwXO2zu7yC4oD_dReAmwEIRrltOleHV_9L-waJYn5y</recordid><startdate>20200219</startdate><enddate>20200219</enddate><creator>Chae, Dongwoo</creator><creator>Kim, Mingeon</creator><creator>Jung, Pil-Hoon</creator><creator>Son, Soomin</creator><creator>Seo, Junyong</creator><creator>Liu, Yuting</creator><creator>Lee, Bong Jae</creator><creator>Lee, Heon</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6635-1880</orcidid></search><sort><creationdate>20200219</creationdate><title>Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling</title><author>Chae, Dongwoo ; Kim, Mingeon ; Jung, Pil-Hoon ; Son, Soomin ; Seo, Junyong ; Liu, Yuting ; Lee, Bong Jae ; Lee, Heon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-476fdcc3092449d3476dc41e443c6deb06a4e31f0144579cc1771eb4c700f0fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chae, Dongwoo</creatorcontrib><creatorcontrib>Kim, Mingeon</creatorcontrib><creatorcontrib>Jung, Pil-Hoon</creatorcontrib><creatorcontrib>Son, Soomin</creatorcontrib><creatorcontrib>Seo, Junyong</creatorcontrib><creatorcontrib>Liu, Yuting</creatorcontrib><creatorcontrib>Lee, Bong Jae</creatorcontrib><creatorcontrib>Lee, Heon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chae, Dongwoo</au><au>Kim, Mingeon</au><au>Jung, Pil-Hoon</au><au>Son, Soomin</au><au>Seo, Junyong</au><au>Liu, Yuting</au><au>Lee, Bong Jae</au><au>Lee, Heon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-02-19</date><risdate>2020</risdate><volume>12</volume><issue>7</issue><spage>8073</spage><epage>8081</epage><pages>8073-8081</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Daytime radiative coolers are used to pump excess heat from a target object into a cold exterior space without energy consumption. Radiative coolers have become attractive cooling options. In this study, a daytime radiative cooler was designed to have a selective emissive property of electromagnetic waves in the atmospheric transparency window of 8–13 μm and preserve low solar absorption for enhancing radiative cooling performance. The proposed daytime radiative cooler has a simple multilayer structure of inorganic materials, namely, Al2O3, Si3N4, and SiO2, and exhibits high emission in the 8–13 μm region. Through a particle swarm optimization method, which is based on an evolutionary algorithm, the stacking sequence and thickness of each layer were optimized to maximize emissions in the 8–13 μm region and minimize the cooling temperature. The average value of emissivity of the fabricated inorganic radiative cooler in the 8–13 μm range was 87%, and its average absorptivity in the solar spectral region (0.3–2.5 μm) was 5.2%. The fabricated inorganic radiative cooler was experimentally applied for daytime radiative cooling. The inorganic radiative cooler can reduce the temperature by up to 8.2 °C compared to the inner ambient temperature during the daytime under direct sunlight.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31990166</pmid><doi>10.1021/acsami.9b16742</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6635-1880</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-02, Vol.12 (7), p.8073-8081 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2347504053 |
source | ACS Publications |
title | Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectrally%20Selective%20Inorganic-Based%20Multilayer%20Emitter%20for%20Daytime%20Radiative%20Cooling&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chae,%20Dongwoo&rft.date=2020-02-19&rft.volume=12&rft.issue=7&rft.spage=8073&rft.epage=8081&rft.pages=8073-8081&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b16742&rft_dat=%3Cproquest_cross%3E2347504053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347504053&rft_id=info:pmid/31990166&rfr_iscdi=true |