Elastic moduli of transversely isotropic graphite fibers and their composites

The paper demonstrates that it is possible to calculate the complete set of elastic mechanical properties for graphite-epoxy fiber-reinforced materials at any fiber-volume fraction by modifying equations previously developed to include transversely isotropic graphite-fiber properties. Experimental v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mechanics 1979-02, Vol.19, p.41-49
Hauptverfasser: Kriz, R D, Stinchcomb, W W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper demonstrates that it is possible to calculate the complete set of elastic mechanical properties for graphite-epoxy fiber-reinforced materials at any fiber-volume fraction by modifying equations previously developed to include transversely isotropic graphite-fiber properties. Experimental verification of the modified equations is demonstrated by using these equations to curve fit elastic-property data obtained ultrasonically over a range of fiber-volume fractions. Material systems under consideration are T300/5208, AS-3501 and Modomor II/LY558 graphite epoxy. Using the modified equations it is possible to extrapolate for fiber properties. From Modomor II/LY558 ultrasonic data, it is shown that five out of seven extrapolated graphite-fiber properties are consistent with the assumption that graphite fibers are transversely isotropic. Elastic properties for T300/5208 and AS-3501 are ultrasonically evaluated by propagating stress waves through six individual specimens cut at various angles from a block of unidirectional material. Particular attention is devoted to specimen dimensions. To demonstrate the need for accurately calculating or experimentally measuring all lamina elastic properties, a brief discussion is included on the effect that variations in lamina elastic properties have on calculating interlaminar stresses.
ISSN:0014-4851
DOI:10.1007/BF02324524