Stable and High‐Efficiency Methylammonium‐Free Perovskite Solar Cells

Organic–inorganic metal halide perovskite solar cells (PSCs) have achieved certified power conversion efficiency (PCE) of 25.2% with complex compositional and bandgap engineering. However, the thermal instability of methylammonium (MA) cation can cause the degradation of the perovskite film, remaini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-03, Vol.32 (9), p.e1905502-n/a
Hauptverfasser: Gao, Xiao‐Xin, Luo, Wen, Zhang, Yi, Hu, Ruiyuan, Zhang, Bao, Züttel, Andreas, Feng, Yaqing, Nazeeruddin, Mohammad Khaja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e1905502
container_title Advanced materials (Weinheim)
container_volume 32
creator Gao, Xiao‐Xin
Luo, Wen
Zhang, Yi
Hu, Ruiyuan
Zhang, Bao
Züttel, Andreas
Feng, Yaqing
Nazeeruddin, Mohammad Khaja
description Organic–inorganic metal halide perovskite solar cells (PSCs) have achieved certified power conversion efficiency (PCE) of 25.2% with complex compositional and bandgap engineering. However, the thermal instability of methylammonium (MA) cation can cause the degradation of the perovskite film, remaining a risk for the long‐term stability of the devices. Herein, a unique method is demonstrated to fabricate highly phase‐stable perovskite film without MA by introducing cesium chloride (CsCl) in the double cation (Cs, formamidinium) perovskite precursor. Moreover, due to the suboptimal bandgap of bromide (Br−), the amount of Br− is regulated, leading to high power conversion efficiency. As a result, MA‐free perovskite solar cells achieve remarkable long‐term stability and a PCE of 20.50%, which is one of the best results for MA‐free PSCs. Moreover, the unencapsulated device retains about 80% of the original efficiencies after a 1000 h aging study. These results provide a feasible approach to enhance solar cell stability and performance simultaneously, paving the way for commercializing PSCs. A highly phase‐stable perovskite film without the methylammonium cation is fabricated by introducing cesium chloride in the double cation Cs, formamidinium perovskite precursor, leading to high power conversion efficiency of 20.5% and remarkable long‐term stability. The unencapsulated perovskite solar cell retains about 80% of its initial efficiency after a 1000 h aging study, demonstrating a feasible approach to enhance solar cell efficiency and stability simultaneously.
doi_str_mv 10.1002/adma.201905502
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2346299263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2346299263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4762-179216157980cc593ef45ecba8a5cc5cb242a1146e01b4723e6fdc36abcae37a3</originalsourceid><addsrcrecordid>eNqFkMtKA0EQRRtRTHxsXcqAGzcTq5-TXoaYmICioK6Hnk6NGZ2Hds8o2fkJfqNfYkt8gBtXRVGnLpdDyAGFAQVgJ2ZRmQEDqkFKYBukTyWjsQAtN0kfNJexVmLYIzve3wOAVqC2SY9TPRRSqz6ZX7cmKzEy9SKaFXfL99e3SZ4XtsDarqILbJer0lRVUxddFW5ThxhdoWue_UPRYnTdlMZFYyxLv0e2clN63P-au-R2OrkZz-Lzy7P5eHQeW5EoFtNEM6qoTPQQrJWaYy4k2swMjQy7zZhghlKhEGgmEsZR5QvLlcmsQZ4YvkuO17mPrnnq0LdpVXgbGpgam86njAvFtGaKB_ToD3rfdK4O7QKldCKSBCBQgzVlXeO9wzx9dEVl3CqlkH5KTj8lpz-Sw8PhV2yXVbj4wb-tBkCvgZeixNU_ceno9GL0G_4BvJmJeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369747700</pqid></control><display><type>article</type><title>Stable and High‐Efficiency Methylammonium‐Free Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gao, Xiao‐Xin ; Luo, Wen ; Zhang, Yi ; Hu, Ruiyuan ; Zhang, Bao ; Züttel, Andreas ; Feng, Yaqing ; Nazeeruddin, Mohammad Khaja</creator><creatorcontrib>Gao, Xiao‐Xin ; Luo, Wen ; Zhang, Yi ; Hu, Ruiyuan ; Zhang, Bao ; Züttel, Andreas ; Feng, Yaqing ; Nazeeruddin, Mohammad Khaja</creatorcontrib><description>Organic–inorganic metal halide perovskite solar cells (PSCs) have achieved certified power conversion efficiency (PCE) of 25.2% with complex compositional and bandgap engineering. However, the thermal instability of methylammonium (MA) cation can cause the degradation of the perovskite film, remaining a risk for the long‐term stability of the devices. Herein, a unique method is demonstrated to fabricate highly phase‐stable perovskite film without MA by introducing cesium chloride (CsCl) in the double cation (Cs, formamidinium) perovskite precursor. Moreover, due to the suboptimal bandgap of bromide (Br−), the amount of Br− is regulated, leading to high power conversion efficiency. As a result, MA‐free perovskite solar cells achieve remarkable long‐term stability and a PCE of 20.50%, which is one of the best results for MA‐free PSCs. Moreover, the unencapsulated device retains about 80% of the original efficiencies after a 1000 h aging study. These results provide a feasible approach to enhance solar cell stability and performance simultaneously, paving the way for commercializing PSCs. A highly phase‐stable perovskite film without the methylammonium cation is fabricated by introducing cesium chloride in the double cation Cs, formamidinium perovskite precursor, leading to high power conversion efficiency of 20.5% and remarkable long‐term stability. The unencapsulated perovskite solar cell retains about 80% of its initial efficiency after a 1000 h aging study, demonstrating a feasible approach to enhance solar cell efficiency and stability simultaneously.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201905502</identifier><identifier>PMID: 31984596</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cations ; Cesium ; cesium chloride ; Efficiency ; Energy conversion efficiency ; Energy gap ; lead bromide ; Metal halides ; methylammonium free ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Solar cells ; Stability ; Thermal instability ; thermal stability</subject><ispartof>Advanced materials (Weinheim), 2020-03, Vol.32 (9), p.e1905502-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4762-179216157980cc593ef45ecba8a5cc5cb242a1146e01b4723e6fdc36abcae37a3</citedby><cites>FETCH-LOGICAL-c4762-179216157980cc593ef45ecba8a5cc5cb242a1146e01b4723e6fdc36abcae37a3</cites><orcidid>0000-0001-5955-4786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201905502$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201905502$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31984596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Xiao‐Xin</creatorcontrib><creatorcontrib>Luo, Wen</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Hu, Ruiyuan</creatorcontrib><creatorcontrib>Zhang, Bao</creatorcontrib><creatorcontrib>Züttel, Andreas</creatorcontrib><creatorcontrib>Feng, Yaqing</creatorcontrib><creatorcontrib>Nazeeruddin, Mohammad Khaja</creatorcontrib><title>Stable and High‐Efficiency Methylammonium‐Free Perovskite Solar Cells</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Organic–inorganic metal halide perovskite solar cells (PSCs) have achieved certified power conversion efficiency (PCE) of 25.2% with complex compositional and bandgap engineering. However, the thermal instability of methylammonium (MA) cation can cause the degradation of the perovskite film, remaining a risk for the long‐term stability of the devices. Herein, a unique method is demonstrated to fabricate highly phase‐stable perovskite film without MA by introducing cesium chloride (CsCl) in the double cation (Cs, formamidinium) perovskite precursor. Moreover, due to the suboptimal bandgap of bromide (Br−), the amount of Br− is regulated, leading to high power conversion efficiency. As a result, MA‐free perovskite solar cells achieve remarkable long‐term stability and a PCE of 20.50%, which is one of the best results for MA‐free PSCs. Moreover, the unencapsulated device retains about 80% of the original efficiencies after a 1000 h aging study. These results provide a feasible approach to enhance solar cell stability and performance simultaneously, paving the way for commercializing PSCs. A highly phase‐stable perovskite film without the methylammonium cation is fabricated by introducing cesium chloride in the double cation Cs, formamidinium perovskite precursor, leading to high power conversion efficiency of 20.5% and remarkable long‐term stability. The unencapsulated perovskite solar cell retains about 80% of its initial efficiency after a 1000 h aging study, demonstrating a feasible approach to enhance solar cell efficiency and stability simultaneously.</description><subject>Cations</subject><subject>Cesium</subject><subject>cesium chloride</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>lead bromide</subject><subject>Metal halides</subject><subject>methylammonium free</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Thermal instability</subject><subject>thermal stability</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKA0EQRRtRTHxsXcqAGzcTq5-TXoaYmICioK6Hnk6NGZ2Hds8o2fkJfqNfYkt8gBtXRVGnLpdDyAGFAQVgJ2ZRmQEDqkFKYBukTyWjsQAtN0kfNJexVmLYIzve3wOAVqC2SY9TPRRSqz6ZX7cmKzEy9SKaFXfL99e3SZ4XtsDarqILbJer0lRVUxddFW5ThxhdoWue_UPRYnTdlMZFYyxLv0e2clN63P-au-R2OrkZz-Lzy7P5eHQeW5EoFtNEM6qoTPQQrJWaYy4k2swMjQy7zZhghlKhEGgmEsZR5QvLlcmsQZ4YvkuO17mPrnnq0LdpVXgbGpgam86njAvFtGaKB_ToD3rfdK4O7QKldCKSBCBQgzVlXeO9wzx9dEVl3CqlkH5KTj8lpz-Sw8PhV2yXVbj4wb-tBkCvgZeixNU_ceno9GL0G_4BvJmJeA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Gao, Xiao‐Xin</creator><creator>Luo, Wen</creator><creator>Zhang, Yi</creator><creator>Hu, Ruiyuan</creator><creator>Zhang, Bao</creator><creator>Züttel, Andreas</creator><creator>Feng, Yaqing</creator><creator>Nazeeruddin, Mohammad Khaja</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5955-4786</orcidid></search><sort><creationdate>20200301</creationdate><title>Stable and High‐Efficiency Methylammonium‐Free Perovskite Solar Cells</title><author>Gao, Xiao‐Xin ; Luo, Wen ; Zhang, Yi ; Hu, Ruiyuan ; Zhang, Bao ; Züttel, Andreas ; Feng, Yaqing ; Nazeeruddin, Mohammad Khaja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4762-179216157980cc593ef45ecba8a5cc5cb242a1146e01b4723e6fdc36abcae37a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cations</topic><topic>Cesium</topic><topic>cesium chloride</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>lead bromide</topic><topic>Metal halides</topic><topic>methylammonium free</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Thermal instability</topic><topic>thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xiao‐Xin</creatorcontrib><creatorcontrib>Luo, Wen</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Hu, Ruiyuan</creatorcontrib><creatorcontrib>Zhang, Bao</creatorcontrib><creatorcontrib>Züttel, Andreas</creatorcontrib><creatorcontrib>Feng, Yaqing</creatorcontrib><creatorcontrib>Nazeeruddin, Mohammad Khaja</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xiao‐Xin</au><au>Luo, Wen</au><au>Zhang, Yi</au><au>Hu, Ruiyuan</au><au>Zhang, Bao</au><au>Züttel, Andreas</au><au>Feng, Yaqing</au><au>Nazeeruddin, Mohammad Khaja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable and High‐Efficiency Methylammonium‐Free Perovskite Solar Cells</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><spage>e1905502</spage><epage>n/a</epage><pages>e1905502-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Organic–inorganic metal halide perovskite solar cells (PSCs) have achieved certified power conversion efficiency (PCE) of 25.2% with complex compositional and bandgap engineering. However, the thermal instability of methylammonium (MA) cation can cause the degradation of the perovskite film, remaining a risk for the long‐term stability of the devices. Herein, a unique method is demonstrated to fabricate highly phase‐stable perovskite film without MA by introducing cesium chloride (CsCl) in the double cation (Cs, formamidinium) perovskite precursor. Moreover, due to the suboptimal bandgap of bromide (Br−), the amount of Br− is regulated, leading to high power conversion efficiency. As a result, MA‐free perovskite solar cells achieve remarkable long‐term stability and a PCE of 20.50%, which is one of the best results for MA‐free PSCs. Moreover, the unencapsulated device retains about 80% of the original efficiencies after a 1000 h aging study. These results provide a feasible approach to enhance solar cell stability and performance simultaneously, paving the way for commercializing PSCs. A highly phase‐stable perovskite film without the methylammonium cation is fabricated by introducing cesium chloride in the double cation Cs, formamidinium perovskite precursor, leading to high power conversion efficiency of 20.5% and remarkable long‐term stability. The unencapsulated perovskite solar cell retains about 80% of its initial efficiency after a 1000 h aging study, demonstrating a feasible approach to enhance solar cell efficiency and stability simultaneously.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31984596</pmid><doi>10.1002/adma.201905502</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5955-4786</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-03, Vol.32 (9), p.e1905502-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2346299263
source Wiley Online Library Journals Frontfile Complete
subjects Cations
Cesium
cesium chloride
Efficiency
Energy conversion efficiency
Energy gap
lead bromide
Metal halides
methylammonium free
perovskite solar cells
Perovskites
Photovoltaic cells
Solar cells
Stability
Thermal instability
thermal stability
title Stable and High‐Efficiency Methylammonium‐Free Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20and%20High%E2%80%90Efficiency%20Methylammonium%E2%80%90Free%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Gao,%20Xiao%E2%80%90Xin&rft.date=2020-03-01&rft.volume=32&rft.issue=9&rft.spage=e1905502&rft.epage=n/a&rft.pages=e1905502-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201905502&rft_dat=%3Cproquest_cross%3E2346299263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369747700&rft_id=info:pmid/31984596&rfr_iscdi=true