Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4
Quantum anomalous Hall goes intrinsicQuantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi2Se3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperatur...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2020-02, Vol.367 (6480), p.895-900 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 900 |
---|---|
container_issue | 6480 |
container_start_page | 895 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 367 |
creator | Deng, Yujun Yu, Yijun Shi, Meng Zhu Guo, Zhongxun Xu, Zihan Wang, Jing Chen, Xian Hui Zhang, Yuanbo |
description | Quantum anomalous Hall goes intrinsicQuantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi2Se3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin et al. did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng et al. observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi2Te4.Science, this issue p. 900, p. 895; see also p. 848In a magnetic topological insulator, nontrivial band topology combines with magnetic order to produce exotic states of matter, such as quantum anomalous Hall (QAH) insulators and axion insulators. In this work, we probe quantum transport in MnBi2Te4 thin flakes—a topological insulator with intrinsic magnetic order. In this layered van der Waals crystal, the ferromagnetic layers couple antiparallel to each other; atomically thin MnBi2Te4, however, becomes ferromagnetic when the sample has an odd number of septuple layers. We observe a zero-field QAH effect in a five–septuple-layer specimen at 1.4 kelvin, and an external magnetic field further raises the quantization temperature to 6.5 kelvin by aligning all layers ferromagnetically. The results establish MnBi2Te4 as an ideal arena for further exploring various topological phenomena with a spontaneously broken time-reversal symmetry. |
doi_str_mv | 10.1126/science.aax8156 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2344274651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344274651</sourcerecordid><originalsourceid>FETCH-LOGICAL-j282t-3fd99a3305d4e007d1de58c049e7614735102cbf795a415882a96d56d532ba173</originalsourceid><addsrcrecordid>eNpdj81LAzEUxIMoWKtnrwtevGzN52Zz1OIXVESp5_KafVtSskndZME_30A9CQNvYH48Zgi5ZnTBGG_uknUYLC4AflqmmhMyY9So2nAqTsmMUtHULdXqnFyktKe0ZEbMyOfHBCFPQwUhDuDjlKoX8L7CvkebKxeK8uhCcrYaYBcwF5PjIfq4cxZ8idPkIcexegsPjq9RXpKzHnzCq787J19Pj-vlS716f35d3q_qPW95rkXfGQNCUNVJpFR3rEPVWioN6oZJLRSj3G57bRRIptqWg2k6VST4FpgWc3J7_HsY4_eEKW8Glyx6DwHLjg0XUnItG8UKevMP3cdpDKXdkZKGKy5-AVKvYHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344249252</pqid></control><display><type>article</type><title>Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4</title><source>Science Magazine</source><creator>Deng, Yujun ; Yu, Yijun ; Shi, Meng Zhu ; Guo, Zhongxun ; Xu, Zihan ; Wang, Jing ; Chen, Xian Hui ; Zhang, Yuanbo</creator><creatorcontrib>Deng, Yujun ; Yu, Yijun ; Shi, Meng Zhu ; Guo, Zhongxun ; Xu, Zihan ; Wang, Jing ; Chen, Xian Hui ; Zhang, Yuanbo</creatorcontrib><description>Quantum anomalous Hall goes intrinsicQuantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi2Se3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin et al. did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng et al. observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi2Te4.Science, this issue p. 900, p. 895; see also p. 848In a magnetic topological insulator, nontrivial band topology combines with magnetic order to produce exotic states of matter, such as quantum anomalous Hall (QAH) insulators and axion insulators. In this work, we probe quantum transport in MnBi2Te4 thin flakes—a topological insulator with intrinsic magnetic order. In this layered van der Waals crystal, the ferromagnetic layers couple antiparallel to each other; atomically thin MnBi2Te4, however, becomes ferromagnetic when the sample has an odd number of septuple layers. We observe a zero-field QAH effect in a five–septuple-layer specimen at 1.4 kelvin, and an external magnetic field further raises the quantization temperature to 6.5 kelvin by aligning all layers ferromagnetically. The results establish MnBi2Te4 as an ideal arena for further exploring various topological phenomena with a spontaneously broken time-reversal symmetry.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aax8156</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Boron ; Conductance ; Electromagnetism ; Magnetic fields ; Magnetism ; Quantum Hall effect ; Quantum transport ; Temperature ; Thin films ; Topology</subject><ispartof>Science (American Association for the Advancement of Science), 2020-02, Vol.367 (6480), p.895-900</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Deng, Yujun</creatorcontrib><creatorcontrib>Yu, Yijun</creatorcontrib><creatorcontrib>Shi, Meng Zhu</creatorcontrib><creatorcontrib>Guo, Zhongxun</creatorcontrib><creatorcontrib>Xu, Zihan</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Chen, Xian Hui</creatorcontrib><creatorcontrib>Zhang, Yuanbo</creatorcontrib><title>Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4</title><title>Science (American Association for the Advancement of Science)</title><description>Quantum anomalous Hall goes intrinsicQuantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi2Se3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin et al. did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng et al. observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi2Te4.Science, this issue p. 900, p. 895; see also p. 848In a magnetic topological insulator, nontrivial band topology combines with magnetic order to produce exotic states of matter, such as quantum anomalous Hall (QAH) insulators and axion insulators. In this work, we probe quantum transport in MnBi2Te4 thin flakes—a topological insulator with intrinsic magnetic order. In this layered van der Waals crystal, the ferromagnetic layers couple antiparallel to each other; atomically thin MnBi2Te4, however, becomes ferromagnetic when the sample has an odd number of septuple layers. We observe a zero-field QAH effect in a five–septuple-layer specimen at 1.4 kelvin, and an external magnetic field further raises the quantization temperature to 6.5 kelvin by aligning all layers ferromagnetically. The results establish MnBi2Te4 as an ideal arena for further exploring various topological phenomena with a spontaneously broken time-reversal symmetry.</description><subject>Boron</subject><subject>Conductance</subject><subject>Electromagnetism</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Quantum Hall effect</subject><subject>Quantum transport</subject><subject>Temperature</subject><subject>Thin films</subject><subject>Topology</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdj81LAzEUxIMoWKtnrwtevGzN52Zz1OIXVESp5_KafVtSskndZME_30A9CQNvYH48Zgi5ZnTBGG_uknUYLC4AflqmmhMyY9So2nAqTsmMUtHULdXqnFyktKe0ZEbMyOfHBCFPQwUhDuDjlKoX8L7CvkebKxeK8uhCcrYaYBcwF5PjIfq4cxZ8idPkIcexegsPjq9RXpKzHnzCq787J19Pj-vlS716f35d3q_qPW95rkXfGQNCUNVJpFR3rEPVWioN6oZJLRSj3G57bRRIptqWg2k6VST4FpgWc3J7_HsY4_eEKW8Glyx6DwHLjg0XUnItG8UKevMP3cdpDKXdkZKGKy5-AVKvYHQ</recordid><startdate>20200221</startdate><enddate>20200221</enddate><creator>Deng, Yujun</creator><creator>Yu, Yijun</creator><creator>Shi, Meng Zhu</creator><creator>Guo, Zhongxun</creator><creator>Xu, Zihan</creator><creator>Wang, Jing</creator><creator>Chen, Xian Hui</creator><creator>Zhang, Yuanbo</creator><general>The American Association for the Advancement of Science</general><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20200221</creationdate><title>Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4</title><author>Deng, Yujun ; Yu, Yijun ; Shi, Meng Zhu ; Guo, Zhongxun ; Xu, Zihan ; Wang, Jing ; Chen, Xian Hui ; Zhang, Yuanbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j282t-3fd99a3305d4e007d1de58c049e7614735102cbf795a415882a96d56d532ba173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boron</topic><topic>Conductance</topic><topic>Electromagnetism</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Quantum Hall effect</topic><topic>Quantum transport</topic><topic>Temperature</topic><topic>Thin films</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yujun</creatorcontrib><creatorcontrib>Yu, Yijun</creatorcontrib><creatorcontrib>Shi, Meng Zhu</creatorcontrib><creatorcontrib>Guo, Zhongxun</creatorcontrib><creatorcontrib>Xu, Zihan</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Chen, Xian Hui</creatorcontrib><creatorcontrib>Zhang, Yuanbo</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Yujun</au><au>Yu, Yijun</au><au>Shi, Meng Zhu</au><au>Guo, Zhongxun</au><au>Xu, Zihan</au><au>Wang, Jing</au><au>Chen, Xian Hui</au><au>Zhang, Yuanbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2020-02-21</date><risdate>2020</risdate><volume>367</volume><issue>6480</issue><spage>895</spage><epage>900</epage><pages>895-900</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Quantum anomalous Hall goes intrinsicQuantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi2Se3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin et al. did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng et al. observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi2Te4.Science, this issue p. 900, p. 895; see also p. 848In a magnetic topological insulator, nontrivial band topology combines with magnetic order to produce exotic states of matter, such as quantum anomalous Hall (QAH) insulators and axion insulators. In this work, we probe quantum transport in MnBi2Te4 thin flakes—a topological insulator with intrinsic magnetic order. In this layered van der Waals crystal, the ferromagnetic layers couple antiparallel to each other; atomically thin MnBi2Te4, however, becomes ferromagnetic when the sample has an odd number of septuple layers. We observe a zero-field QAH effect in a five–septuple-layer specimen at 1.4 kelvin, and an external magnetic field further raises the quantization temperature to 6.5 kelvin by aligning all layers ferromagnetically. The results establish MnBi2Te4 as an ideal arena for further exploring various topological phenomena with a spontaneously broken time-reversal symmetry.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.aax8156</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-02, Vol.367 (6480), p.895-900 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2344274651 |
source | Science Magazine |
subjects | Boron Conductance Electromagnetism Magnetic fields Magnetism Quantum Hall effect Quantum transport Temperature Thin films Topology |
title | Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20anomalous%20Hall%20effect%20in%20intrinsic%20magnetic%20topological%20insulator%20MnBi2Te4&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Deng,%20Yujun&rft.date=2020-02-21&rft.volume=367&rft.issue=6480&rft.spage=895&rft.epage=900&rft.pages=895-900&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aax8156&rft_dat=%3Cproquest%3E2344274651%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344249252&rft_id=info:pmid/&rfr_iscdi=true |