Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries

Polypyrrole-coated high Na content Na0.91MnO2 porous microcubes are prepared through high temperature calcination followed by a chemical ice water bath process. The higher sodium content of Na0.91MnO2 makes capacity increase up to 50 mAh g−1 compared with Na0.7MnO2.05. The thus wider interlayer spac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2020-04, Vol.565, p.218-226
Hauptverfasser: Lu, D., Yao, Z.J., Li, Y.Q., Zhong, Y., Wang, X.L., Xie, D., Xia, X.H., Gu, C.D., Tu, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue
container_start_page 218
container_title Journal of colloid and interface science
container_volume 565
creator Lu, D.
Yao, Z.J.
Li, Y.Q.
Zhong, Y.
Wang, X.L.
Xie, D.
Xia, X.H.
Gu, C.D.
Tu, J.P.
description Polypyrrole-coated high Na content Na0.91MnO2 porous microcubes are prepared through high temperature calcination followed by a chemical ice water bath process. The higher sodium content of Na0.91MnO2 makes capacity increase up to 50 mAh g−1 compared with Na0.7MnO2.05. The thus wider interlayer space makes ion/electron insertion/extraction faster. Porous structure providing shorter ion/electron diffusion distance compared with hollow sphere structure. The conductive polymer modified sodium manganate oxide cathode for sodium ion full batteries exhibits ultrahigh initial capacity, cycling stability and rate capability. [Display omitted] Highly conductive cathode material with enhanced Na+ diffusion kinetics is of great importance in the exploration of sodium ion batteries. In this work, Na0.91MnO2 porous microcube which is coated with highly conductive polypyrrole (PPy) is obtained. The high Na content in the layered sodium manganate oxide brings about wider interlayer distance resulting in high capacity and electrochemical kinetics. The higher sodium content of Na0.91MO2 makes capacity increase up to 50 mAh g−1 compared with Na0.7MnO2.05. Furthermore, the well-designed combination between porous structure and conductive PPy coating exhibits fast ion/electron transfer inside the electrode and high cycling stability. The PPy coated Na0.91MnO2 delivers a high initial capacity of 208 mAh g−1, encouraging capacity retention and rate capability. Based on the porous Na0.91MnO2@PPy cathode, the sodium ion full cells with puffed millet porous carbon anode show remarkably stable cycling and high-rate performances.
doi_str_mv 10.1016/j.jcis.2020.01.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2344270211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979720300254</els_id><sourcerecordid>2344270211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4f40497449804fe1302f64b7466b22d16056b6a4ce33b22ae92d5e29b5d5ad4f3</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EotvCH-CAfOSSdPyVYKkXVLUUqRIH4Gw59qTrVRIHO4Fufz1etu2xJ49Gz7zW-xDygUHNgDXnu3rnQq45cKiB1cDFK7JhoFXVMhCvyQaAs0q3uj0hpznvABhTSr8lJ4LplguhNuThR_RhHasU3JaOdrqzE2ak8T54pHNMcc10DC5Ft3aY6d-wbMt62M_7lOKA1EW7hOmO2kwtzeuMKcREnV22sQT0Zc7_P6AhTrRfh4F2dlkKhfkdedPbIeP7x_eM_Lq--nl5U91-__rt8stt5YRqlkr2EqRupdSfQfbIBPC-kV0rm6bj3LMGVNM1VjoUoiwsau4Vct0pr6yXvTgjn465c4q_V8yLGUN2OAylaqlnuJCSt0UVKyg_oqVwzgl7M6cw2rQ3DMzBudmZg3NzcG6AmeK8HH18zF-7Ef3zyZPkAlwcASwt_wRMJruAk0MfErrF-Bheyv8H5_SUhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344270211</pqid></control><display><type>article</type><title>Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Lu, D. ; Yao, Z.J. ; Li, Y.Q. ; Zhong, Y. ; Wang, X.L. ; Xie, D. ; Xia, X.H. ; Gu, C.D. ; Tu, J.P.</creator><creatorcontrib>Lu, D. ; Yao, Z.J. ; Li, Y.Q. ; Zhong, Y. ; Wang, X.L. ; Xie, D. ; Xia, X.H. ; Gu, C.D. ; Tu, J.P.</creatorcontrib><description>Polypyrrole-coated high Na content Na0.91MnO2 porous microcubes are prepared through high temperature calcination followed by a chemical ice water bath process. The higher sodium content of Na0.91MnO2 makes capacity increase up to 50 mAh g−1 compared with Na0.7MnO2.05. The thus wider interlayer space makes ion/electron insertion/extraction faster. Porous structure providing shorter ion/electron diffusion distance compared with hollow sphere structure. The conductive polymer modified sodium manganate oxide cathode for sodium ion full batteries exhibits ultrahigh initial capacity, cycling stability and rate capability. [Display omitted] Highly conductive cathode material with enhanced Na+ diffusion kinetics is of great importance in the exploration of sodium ion batteries. In this work, Na0.91MnO2 porous microcube which is coated with highly conductive polypyrrole (PPy) is obtained. The high Na content in the layered sodium manganate oxide brings about wider interlayer distance resulting in high capacity and electrochemical kinetics. The higher sodium content of Na0.91MO2 makes capacity increase up to 50 mAh g−1 compared with Na0.7MnO2.05. Furthermore, the well-designed combination between porous structure and conductive PPy coating exhibits fast ion/electron transfer inside the electrode and high cycling stability. The PPy coated Na0.91MnO2 delivers a high initial capacity of 208 mAh g−1, encouraging capacity retention and rate capability. Based on the porous Na0.91MnO2@PPy cathode, the sodium ion full cells with puffed millet porous carbon anode show remarkably stable cycling and high-rate performances.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2020.01.023</identifier><identifier>PMID: 31972335</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Electrochemical performance ; Polypyrrole ; Porous microcube ; Sodium ion battery ; Sodium manganate oxide</subject><ispartof>Journal of colloid and interface science, 2020-04, Vol.565, p.218-226</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4f40497449804fe1302f64b7466b22d16056b6a4ce33b22ae92d5e29b5d5ad4f3</citedby><cites>FETCH-LOGICAL-c356t-4f40497449804fe1302f64b7466b22d16056b6a4ce33b22ae92d5e29b5d5ad4f3</cites><orcidid>0000-0001-8286-263X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979720300254$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31972335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, D.</creatorcontrib><creatorcontrib>Yao, Z.J.</creatorcontrib><creatorcontrib>Li, Y.Q.</creatorcontrib><creatorcontrib>Zhong, Y.</creatorcontrib><creatorcontrib>Wang, X.L.</creatorcontrib><creatorcontrib>Xie, D.</creatorcontrib><creatorcontrib>Xia, X.H.</creatorcontrib><creatorcontrib>Gu, C.D.</creatorcontrib><creatorcontrib>Tu, J.P.</creatorcontrib><title>Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>Polypyrrole-coated high Na content Na0.91MnO2 porous microcubes are prepared through high temperature calcination followed by a chemical ice water bath process. The higher sodium content of Na0.91MnO2 makes capacity increase up to 50 mAh g−1 compared with Na0.7MnO2.05. The thus wider interlayer space makes ion/electron insertion/extraction faster. Porous structure providing shorter ion/electron diffusion distance compared with hollow sphere structure. The conductive polymer modified sodium manganate oxide cathode for sodium ion full batteries exhibits ultrahigh initial capacity, cycling stability and rate capability. [Display omitted] Highly conductive cathode material with enhanced Na+ diffusion kinetics is of great importance in the exploration of sodium ion batteries. In this work, Na0.91MnO2 porous microcube which is coated with highly conductive polypyrrole (PPy) is obtained. The high Na content in the layered sodium manganate oxide brings about wider interlayer distance resulting in high capacity and electrochemical kinetics. The higher sodium content of Na0.91MO2 makes capacity increase up to 50 mAh g−1 compared with Na0.7MnO2.05. Furthermore, the well-designed combination between porous structure and conductive PPy coating exhibits fast ion/electron transfer inside the electrode and high cycling stability. The PPy coated Na0.91MnO2 delivers a high initial capacity of 208 mAh g−1, encouraging capacity retention and rate capability. Based on the porous Na0.91MnO2@PPy cathode, the sodium ion full cells with puffed millet porous carbon anode show remarkably stable cycling and high-rate performances.</description><subject>Electrochemical performance</subject><subject>Polypyrrole</subject><subject>Porous microcube</subject><subject>Sodium ion battery</subject><subject>Sodium manganate oxide</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi0EotvCH-CAfOSSdPyVYKkXVLUUqRIH4Gw59qTrVRIHO4Fufz1etu2xJ49Gz7zW-xDygUHNgDXnu3rnQq45cKiB1cDFK7JhoFXVMhCvyQaAs0q3uj0hpznvABhTSr8lJ4LplguhNuThR_RhHasU3JaOdrqzE2ak8T54pHNMcc10DC5Ft3aY6d-wbMt62M_7lOKA1EW7hOmO2kwtzeuMKcREnV22sQT0Zc7_P6AhTrRfh4F2dlkKhfkdedPbIeP7x_eM_Lq--nl5U91-__rt8stt5YRqlkr2EqRupdSfQfbIBPC-kV0rm6bj3LMGVNM1VjoUoiwsau4Vct0pr6yXvTgjn465c4q_V8yLGUN2OAylaqlnuJCSt0UVKyg_oqVwzgl7M6cw2rQ3DMzBudmZg3NzcG6AmeK8HH18zF-7Ef3zyZPkAlwcASwt_wRMJruAk0MfErrF-Bheyv8H5_SUhA</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Lu, D.</creator><creator>Yao, Z.J.</creator><creator>Li, Y.Q.</creator><creator>Zhong, Y.</creator><creator>Wang, X.L.</creator><creator>Xie, D.</creator><creator>Xia, X.H.</creator><creator>Gu, C.D.</creator><creator>Tu, J.P.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8286-263X</orcidid></search><sort><creationdate>20200401</creationdate><title>Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries</title><author>Lu, D. ; Yao, Z.J. ; Li, Y.Q. ; Zhong, Y. ; Wang, X.L. ; Xie, D. ; Xia, X.H. ; Gu, C.D. ; Tu, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4f40497449804fe1302f64b7466b22d16056b6a4ce33b22ae92d5e29b5d5ad4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Electrochemical performance</topic><topic>Polypyrrole</topic><topic>Porous microcube</topic><topic>Sodium ion battery</topic><topic>Sodium manganate oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, D.</creatorcontrib><creatorcontrib>Yao, Z.J.</creatorcontrib><creatorcontrib>Li, Y.Q.</creatorcontrib><creatorcontrib>Zhong, Y.</creatorcontrib><creatorcontrib>Wang, X.L.</creatorcontrib><creatorcontrib>Xie, D.</creatorcontrib><creatorcontrib>Xia, X.H.</creatorcontrib><creatorcontrib>Gu, C.D.</creatorcontrib><creatorcontrib>Tu, J.P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, D.</au><au>Yao, Z.J.</au><au>Li, Y.Q.</au><au>Zhong, Y.</au><au>Wang, X.L.</au><au>Xie, D.</au><au>Xia, X.H.</au><au>Gu, C.D.</au><au>Tu, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>565</volume><spage>218</spage><epage>226</epage><pages>218-226</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>Polypyrrole-coated high Na content Na0.91MnO2 porous microcubes are prepared through high temperature calcination followed by a chemical ice water bath process. The higher sodium content of Na0.91MnO2 makes capacity increase up to 50 mAh g−1 compared with Na0.7MnO2.05. The thus wider interlayer space makes ion/electron insertion/extraction faster. Porous structure providing shorter ion/electron diffusion distance compared with hollow sphere structure. The conductive polymer modified sodium manganate oxide cathode for sodium ion full batteries exhibits ultrahigh initial capacity, cycling stability and rate capability. [Display omitted] Highly conductive cathode material with enhanced Na+ diffusion kinetics is of great importance in the exploration of sodium ion batteries. In this work, Na0.91MnO2 porous microcube which is coated with highly conductive polypyrrole (PPy) is obtained. The high Na content in the layered sodium manganate oxide brings about wider interlayer distance resulting in high capacity and electrochemical kinetics. The higher sodium content of Na0.91MO2 makes capacity increase up to 50 mAh g−1 compared with Na0.7MnO2.05. Furthermore, the well-designed combination between porous structure and conductive PPy coating exhibits fast ion/electron transfer inside the electrode and high cycling stability. The PPy coated Na0.91MnO2 delivers a high initial capacity of 208 mAh g−1, encouraging capacity retention and rate capability. Based on the porous Na0.91MnO2@PPy cathode, the sodium ion full cells with puffed millet porous carbon anode show remarkably stable cycling and high-rate performances.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31972335</pmid><doi>10.1016/j.jcis.2020.01.023</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8286-263X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2020-04, Vol.565, p.218-226
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2344270211
source Elsevier ScienceDirect Journals
subjects Electrochemical performance
Polypyrrole
Porous microcube
Sodium ion battery
Sodium manganate oxide
title Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium-rich%20manganese%20oxide%20porous%20microcubes%20with%20polypyrrole%20coating%20as%20a%20superior%20cathode%20for%20sodium%20ion%20full%20batteries&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Lu,%20D.&rft.date=2020-04-01&rft.volume=565&rft.spage=218&rft.epage=226&rft.pages=218-226&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2020.01.023&rft_dat=%3Cproquest_cross%3E2344270211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2344270211&rft_id=info:pmid/31972335&rft_els_id=S0021979720300254&rfr_iscdi=true