The role of mechanotransduction in heart failure pathobiology—a concise review

This review evaluates the role of mechanotransduction (MT) in heart failure (HF) pathobiology. Cardiac functional and structural modifications are regulated by biomechanical forces. Exposing cardiomyocytes and the myocardial tissue to altered biomechanical stress precipitates changes in the end-dias...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heart failure reviews 2021-07, Vol.26 (4), p.981-995
Hauptverfasser: Krueger, Wolfgang, Bender, Nicole, Haeusler, Martin, Henneberg, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 995
container_issue 4
container_start_page 981
container_title Heart failure reviews
container_volume 26
creator Krueger, Wolfgang
Bender, Nicole
Haeusler, Martin
Henneberg, Maciej
description This review evaluates the role of mechanotransduction (MT) in heart failure (HF) pathobiology. Cardiac functional and structural modifications are regulated by biomechanical forces. Exposing cardiomyocytes and the myocardial tissue to altered biomechanical stress precipitates changes in the end-diastolic wall stress (EDWS). Thereby various interconnected biomolecular pathways, essentially mediated and orchestrated by MT, are launched and jointly contribute to adapt and remodel the myocardium. This cardiac MT-mediated feedback decisively determines the primary cardiac cellular and tissue response, the sort (concentric or eccentric) of hypertrophy/remodeling, to mechanical and/or hemodynamic alterations. Moreover, the altered EDWS affects the diastolic myocardial properties independent of the systolic function, and elevated EDWS causes diastolic dysfunction. The close interconnection between MT pathways and the cell nucleus, the genetic endowment, principally allows for the wide variety of phenotypic appearances. However, demographic, environmental features, comorbidities, and also the genetic make-up may modulate the phenotypic result. Cardiac MT takes a fundamental and superordinate position in the myocardial adaptation and remodeling processes in all HF categories and phenotypes. Therefore, the effects of MT should be integrated in all our scientific, clinical, and therapeutic considerations.
doi_str_mv 10.1007/s10741-020-09915-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2343500852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343500852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-a520ed29047f2115a73f5b1b143858d65b099908bd33f5809bd73d9391a4e3853</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EoqVwARYoEhs2gRk_6niJKl5SJVjA2nIShwalcbETUHccghNyEgzhIbFgNZbmm3_GHyH7CMcIIE8CguSYAoUUlEKR4gYZo5AslYzSzfhmGU05cjkiOyE8AABXHLbJiKGaCi7ZmNzcLmziXWMTVyVLWyxM6zpv2lD2RVe7NqnbZGGN75LK1E3vbbIy3cLltWvc_frt5dUkhWuLOsQU-1Tb512yVZkm2L2vOiF352e3s8t0fn1xNTudpwWTokuNoGBLqoDLiiIKI1klcsyRs0xk5VTk8UsKsrxksZGBykvJSsUUGm4jwibkaMhdeffY29DpZR0K2zSmta4PmjLOBEAmaEQP_6APrvdtvE5TwTDjSFFFig5U4V0I3lZ65eul8WuNoD9868G3jr71p2-NcejgK7rPl7b8GfkWHAE2ACG22nvrf3f_E_sOzkWKcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2531841219</pqid></control><display><type>article</type><title>The role of mechanotransduction in heart failure pathobiology—a concise review</title><source>Springer Nature - Complete Springer Journals</source><creator>Krueger, Wolfgang ; Bender, Nicole ; Haeusler, Martin ; Henneberg, Maciej</creator><creatorcontrib>Krueger, Wolfgang ; Bender, Nicole ; Haeusler, Martin ; Henneberg, Maciej</creatorcontrib><description>This review evaluates the role of mechanotransduction (MT) in heart failure (HF) pathobiology. Cardiac functional and structural modifications are regulated by biomechanical forces. Exposing cardiomyocytes and the myocardial tissue to altered biomechanical stress precipitates changes in the end-diastolic wall stress (EDWS). Thereby various interconnected biomolecular pathways, essentially mediated and orchestrated by MT, are launched and jointly contribute to adapt and remodel the myocardium. This cardiac MT-mediated feedback decisively determines the primary cardiac cellular and tissue response, the sort (concentric or eccentric) of hypertrophy/remodeling, to mechanical and/or hemodynamic alterations. Moreover, the altered EDWS affects the diastolic myocardial properties independent of the systolic function, and elevated EDWS causes diastolic dysfunction. The close interconnection between MT pathways and the cell nucleus, the genetic endowment, principally allows for the wide variety of phenotypic appearances. However, demographic, environmental features, comorbidities, and also the genetic make-up may modulate the phenotypic result. Cardiac MT takes a fundamental and superordinate position in the myocardial adaptation and remodeling processes in all HF categories and phenotypes. Therefore, the effects of MT should be integrated in all our scientific, clinical, and therapeutic considerations.</description><identifier>ISSN: 1382-4147</identifier><identifier>EISSN: 1573-7322</identifier><identifier>DOI: 10.1007/s10741-020-09915-1</identifier><identifier>PMID: 31965473</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomechanics ; Cardiology ; Cardiomyocytes ; Congestive heart failure ; Heart failure ; Hypertrophy ; Mechanotransduction ; Medicine ; Medicine &amp; Public Health ; Myocardium ; Phenotypes ; Structure-function relationships</subject><ispartof>Heart failure reviews, 2021-07, Vol.26 (4), p.981-995</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-a520ed29047f2115a73f5b1b143858d65b099908bd33f5809bd73d9391a4e3853</citedby><cites>FETCH-LOGICAL-c375t-a520ed29047f2115a73f5b1b143858d65b099908bd33f5809bd73d9391a4e3853</cites><orcidid>0000-0003-3798-3840</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10741-020-09915-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10741-020-09915-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31965473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krueger, Wolfgang</creatorcontrib><creatorcontrib>Bender, Nicole</creatorcontrib><creatorcontrib>Haeusler, Martin</creatorcontrib><creatorcontrib>Henneberg, Maciej</creatorcontrib><title>The role of mechanotransduction in heart failure pathobiology—a concise review</title><title>Heart failure reviews</title><addtitle>Heart Fail Rev</addtitle><addtitle>Heart Fail Rev</addtitle><description>This review evaluates the role of mechanotransduction (MT) in heart failure (HF) pathobiology. Cardiac functional and structural modifications are regulated by biomechanical forces. Exposing cardiomyocytes and the myocardial tissue to altered biomechanical stress precipitates changes in the end-diastolic wall stress (EDWS). Thereby various interconnected biomolecular pathways, essentially mediated and orchestrated by MT, are launched and jointly contribute to adapt and remodel the myocardium. This cardiac MT-mediated feedback decisively determines the primary cardiac cellular and tissue response, the sort (concentric or eccentric) of hypertrophy/remodeling, to mechanical and/or hemodynamic alterations. Moreover, the altered EDWS affects the diastolic myocardial properties independent of the systolic function, and elevated EDWS causes diastolic dysfunction. The close interconnection between MT pathways and the cell nucleus, the genetic endowment, principally allows for the wide variety of phenotypic appearances. However, demographic, environmental features, comorbidities, and also the genetic make-up may modulate the phenotypic result. Cardiac MT takes a fundamental and superordinate position in the myocardial adaptation and remodeling processes in all HF categories and phenotypes. Therefore, the effects of MT should be integrated in all our scientific, clinical, and therapeutic considerations.</description><subject>Biomechanics</subject><subject>Cardiology</subject><subject>Cardiomyocytes</subject><subject>Congestive heart failure</subject><subject>Heart failure</subject><subject>Hypertrophy</subject><subject>Mechanotransduction</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Myocardium</subject><subject>Phenotypes</subject><subject>Structure-function relationships</subject><issn>1382-4147</issn><issn>1573-7322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtOwzAQhi0EoqVwARYoEhs2gRk_6niJKl5SJVjA2nIShwalcbETUHccghNyEgzhIbFgNZbmm3_GHyH7CMcIIE8CguSYAoUUlEKR4gYZo5AslYzSzfhmGU05cjkiOyE8AABXHLbJiKGaCi7ZmNzcLmziXWMTVyVLWyxM6zpv2lD2RVe7NqnbZGGN75LK1E3vbbIy3cLltWvc_frt5dUkhWuLOsQU-1Tb512yVZkm2L2vOiF352e3s8t0fn1xNTudpwWTokuNoGBLqoDLiiIKI1klcsyRs0xk5VTk8UsKsrxksZGBykvJSsUUGm4jwibkaMhdeffY29DpZR0K2zSmta4PmjLOBEAmaEQP_6APrvdtvE5TwTDjSFFFig5U4V0I3lZ65eul8WuNoD9868G3jr71p2-NcejgK7rPl7b8GfkWHAE2ACG22nvrf3f_E_sOzkWKcQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Krueger, Wolfgang</creator><creator>Bender, Nicole</creator><creator>Haeusler, Martin</creator><creator>Henneberg, Maciej</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3798-3840</orcidid></search><sort><creationdate>20210701</creationdate><title>The role of mechanotransduction in heart failure pathobiology—a concise review</title><author>Krueger, Wolfgang ; Bender, Nicole ; Haeusler, Martin ; Henneberg, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-a520ed29047f2115a73f5b1b143858d65b099908bd33f5809bd73d9391a4e3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomechanics</topic><topic>Cardiology</topic><topic>Cardiomyocytes</topic><topic>Congestive heart failure</topic><topic>Heart failure</topic><topic>Hypertrophy</topic><topic>Mechanotransduction</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Myocardium</topic><topic>Phenotypes</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krueger, Wolfgang</creatorcontrib><creatorcontrib>Bender, Nicole</creatorcontrib><creatorcontrib>Haeusler, Martin</creatorcontrib><creatorcontrib>Henneberg, Maciej</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Heart failure reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krueger, Wolfgang</au><au>Bender, Nicole</au><au>Haeusler, Martin</au><au>Henneberg, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of mechanotransduction in heart failure pathobiology—a concise review</atitle><jtitle>Heart failure reviews</jtitle><stitle>Heart Fail Rev</stitle><addtitle>Heart Fail Rev</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>26</volume><issue>4</issue><spage>981</spage><epage>995</epage><pages>981-995</pages><issn>1382-4147</issn><eissn>1573-7322</eissn><abstract>This review evaluates the role of mechanotransduction (MT) in heart failure (HF) pathobiology. Cardiac functional and structural modifications are regulated by biomechanical forces. Exposing cardiomyocytes and the myocardial tissue to altered biomechanical stress precipitates changes in the end-diastolic wall stress (EDWS). Thereby various interconnected biomolecular pathways, essentially mediated and orchestrated by MT, are launched and jointly contribute to adapt and remodel the myocardium. This cardiac MT-mediated feedback decisively determines the primary cardiac cellular and tissue response, the sort (concentric or eccentric) of hypertrophy/remodeling, to mechanical and/or hemodynamic alterations. Moreover, the altered EDWS affects the diastolic myocardial properties independent of the systolic function, and elevated EDWS causes diastolic dysfunction. The close interconnection between MT pathways and the cell nucleus, the genetic endowment, principally allows for the wide variety of phenotypic appearances. However, demographic, environmental features, comorbidities, and also the genetic make-up may modulate the phenotypic result. Cardiac MT takes a fundamental and superordinate position in the myocardial adaptation and remodeling processes in all HF categories and phenotypes. Therefore, the effects of MT should be integrated in all our scientific, clinical, and therapeutic considerations.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31965473</pmid><doi>10.1007/s10741-020-09915-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3798-3840</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-4147
ispartof Heart failure reviews, 2021-07, Vol.26 (4), p.981-995
issn 1382-4147
1573-7322
language eng
recordid cdi_proquest_miscellaneous_2343500852
source Springer Nature - Complete Springer Journals
subjects Biomechanics
Cardiology
Cardiomyocytes
Congestive heart failure
Heart failure
Hypertrophy
Mechanotransduction
Medicine
Medicine & Public Health
Myocardium
Phenotypes
Structure-function relationships
title The role of mechanotransduction in heart failure pathobiology—a concise review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20mechanotransduction%20in%20heart%20failure%20pathobiology%E2%80%94a%20concise%20review&rft.jtitle=Heart%20failure%20reviews&rft.au=Krueger,%20Wolfgang&rft.date=2021-07-01&rft.volume=26&rft.issue=4&rft.spage=981&rft.epage=995&rft.pages=981-995&rft.issn=1382-4147&rft.eissn=1573-7322&rft_id=info:doi/10.1007/s10741-020-09915-1&rft_dat=%3Cproquest_cross%3E2343500852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2531841219&rft_id=info:pmid/31965473&rfr_iscdi=true