Identification of HSF1 Target Genes Involved in Thermal Stress in the Pacific Oyster Crassostrea gigas by ChIP-seq

The Pacific oyster Crassostrea gigas , a commercially important species inhabiting the intertidal zone, facing enormous temperature fluctuations. Therefore, it is important to identify candidate genes and key regulatory relationships associated with thermal tolerance, which can aid the molecular bre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine biotechnology (New York, N.Y.) N.Y.), 2020-04, Vol.22 (2), p.167-179
Hauptverfasser: Liu, Youli, Zhu, Qihui, Li, Li, Wang, Wei, Zhang, Guofan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 2
container_start_page 167
container_title Marine biotechnology (New York, N.Y.)
container_volume 22
creator Liu, Youli
Zhu, Qihui
Li, Li
Wang, Wei
Zhang, Guofan
description The Pacific oyster Crassostrea gigas , a commercially important species inhabiting the intertidal zone, facing enormous temperature fluctuations. Therefore, it is important to identify candidate genes and key regulatory relationships associated with thermal tolerance, which can aid the molecular breeding of oysters. Heat shock transcription factor 1 ( HSF1 ) plays an important role in the thermal stress resistance. However, the regulatory relationship between the expansion of heat shock protein (HSP) HSP 70 and HSF1 is not yet clear in C. gigas . In this study, we analyzed genes regulated by HSF1 in response to heat shock by chromatin immunoprecipitation followed by sequencing (ChIP-seq), determined the expression patterns of target genes by qRT-PCR, and validated the regulatory relationship between one HSP70 and HSF1. We found 916 peaks corresponding to HSF1 binding sites, and these peaks were annotated to the nearest genes. In Gene Ontology analysis, HSF1 target genes were related to signal transduction, energy production, and response to biotic stimulus. Four HSP70 genes, two HSP40 genes, and one small HSP gene exhibited binding to HSF1. One HSP70 with a binding site in the promoter region was validated to be regulated by HSF1 under heat shock. These results provide a basis for future studies aimed at determining the mechanisms underlying thermal tolerance and provide insights into gene regulation in the Pacific oyster.
doi_str_mv 10.1007/s10126-019-09942-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2343498089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2379348714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-615d83183e355197df5184915ada8b18d93daea39e400627ca01b9d4e444ddaf3</originalsourceid><addsrcrecordid>eNp9kU9LwzAYh4Mo_pl-AQ8S8OKlmjRpmxxlqBsIG2yeQ9q87Spdq3m7wb69mZsTPHhKSJ7f7w15CLnm7J4zlj0gZzxOI8Z1xLSWcZQekXMuRRrFsUiPD_tYnZELxHcWQplgp-RMcJ0mUuhz4scO2r4u68L2ddfSrqSj2TOnc-sr6OkLtIB03K67Zg2O1i2dL8AvbUNnvQfE7Um_ADq1xbaDTjbYg6dDbxE7DIilVV1ZpPmGDhfjaYTweUlOStsgXO3XAXl7fpoPR9Hr5GU8fHyNCpElfZTyxCnBlQCRJFxnrky4kpon1lmVc-W0cBas0CAZS-OssIzn2kmQUjpnSzEgd7veD999rgB7s6yxgKaxLXQrNLGQQmrFlA7o7R_0vVv5NrwuUJkWUmXhLwck3lGF7xA9lObD10vrN4YzszVidkZMMGK-jZg0hG721at8Ce4Q-VEQALEDMFy1Ffjf2f_UfgEKRJUT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379348714</pqid></control><display><type>article</type><title>Identification of HSF1 Target Genes Involved in Thermal Stress in the Pacific Oyster Crassostrea gigas by ChIP-seq</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Youli ; Zhu, Qihui ; Li, Li ; Wang, Wei ; Zhang, Guofan</creator><creatorcontrib>Liu, Youli ; Zhu, Qihui ; Li, Li ; Wang, Wei ; Zhang, Guofan</creatorcontrib><description>The Pacific oyster Crassostrea gigas , a commercially important species inhabiting the intertidal zone, facing enormous temperature fluctuations. Therefore, it is important to identify candidate genes and key regulatory relationships associated with thermal tolerance, which can aid the molecular breeding of oysters. Heat shock transcription factor 1 ( HSF1 ) plays an important role in the thermal stress resistance. However, the regulatory relationship between the expansion of heat shock protein (HSP) HSP 70 and HSF1 is not yet clear in C. gigas . In this study, we analyzed genes regulated by HSF1 in response to heat shock by chromatin immunoprecipitation followed by sequencing (ChIP-seq), determined the expression patterns of target genes by qRT-PCR, and validated the regulatory relationship between one HSP70 and HSF1. We found 916 peaks corresponding to HSF1 binding sites, and these peaks were annotated to the nearest genes. In Gene Ontology analysis, HSF1 target genes were related to signal transduction, energy production, and response to biotic stimulus. Four HSP70 genes, two HSP40 genes, and one small HSP gene exhibited binding to HSF1. One HSP70 with a binding site in the promoter region was validated to be regulated by HSF1 under heat shock. These results provide a basis for future studies aimed at determining the mechanisms underlying thermal tolerance and provide insights into gene regulation in the Pacific oyster.</description><identifier>ISSN: 1436-2228</identifier><identifier>EISSN: 1436-2236</identifier><identifier>DOI: 10.1007/s10126-019-09942-6</identifier><identifier>PMID: 31965439</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Binding sites ; Biomedical and Life Sciences ; Breeding ; Chromatin ; Crassostrea gigas ; DNA ; Engineering ; Freshwater &amp; Marine Ecology ; Gene expression ; Gene regulation ; Genes ; Heat shock ; Heat shock factors ; Heat shock proteins ; HSF1 protein ; Hsp40 protein ; Hsp70 protein ; Immunoprecipitation ; Intertidal environment ; Intertidal zone ; Life Sciences ; Marine molluscs ; Microbiology ; Nucleotide sequence ; Original Article ; Oysters ; PCR ; Physical growth ; Signal transduction ; Target recognition ; Temperature tolerance ; Thermal resistance ; Thermal stress ; Transcription ; Zoology</subject><ispartof>Marine biotechnology (New York, N.Y.), 2020-04, Vol.22 (2), p.167-179</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Marine Biotechnology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-615d83183e355197df5184915ada8b18d93daea39e400627ca01b9d4e444ddaf3</citedby><cites>FETCH-LOGICAL-c375t-615d83183e355197df5184915ada8b18d93daea39e400627ca01b9d4e444ddaf3</cites><orcidid>0000-0002-7130-2386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10126-019-09942-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10126-019-09942-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31965439$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Youli</creatorcontrib><creatorcontrib>Zhu, Qihui</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhang, Guofan</creatorcontrib><title>Identification of HSF1 Target Genes Involved in Thermal Stress in the Pacific Oyster Crassostrea gigas by ChIP-seq</title><title>Marine biotechnology (New York, N.Y.)</title><addtitle>Mar Biotechnol</addtitle><addtitle>Mar Biotechnol (NY)</addtitle><description>The Pacific oyster Crassostrea gigas , a commercially important species inhabiting the intertidal zone, facing enormous temperature fluctuations. Therefore, it is important to identify candidate genes and key regulatory relationships associated with thermal tolerance, which can aid the molecular breeding of oysters. Heat shock transcription factor 1 ( HSF1 ) plays an important role in the thermal stress resistance. However, the regulatory relationship between the expansion of heat shock protein (HSP) HSP 70 and HSF1 is not yet clear in C. gigas . In this study, we analyzed genes regulated by HSF1 in response to heat shock by chromatin immunoprecipitation followed by sequencing (ChIP-seq), determined the expression patterns of target genes by qRT-PCR, and validated the regulatory relationship between one HSP70 and HSF1. We found 916 peaks corresponding to HSF1 binding sites, and these peaks were annotated to the nearest genes. In Gene Ontology analysis, HSF1 target genes were related to signal transduction, energy production, and response to biotic stimulus. Four HSP70 genes, two HSP40 genes, and one small HSP gene exhibited binding to HSF1. One HSP70 with a binding site in the promoter region was validated to be regulated by HSF1 under heat shock. These results provide a basis for future studies aimed at determining the mechanisms underlying thermal tolerance and provide insights into gene regulation in the Pacific oyster.</description><subject>Binding sites</subject><subject>Biomedical and Life Sciences</subject><subject>Breeding</subject><subject>Chromatin</subject><subject>Crassostrea gigas</subject><subject>DNA</subject><subject>Engineering</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Heat shock</subject><subject>Heat shock factors</subject><subject>Heat shock proteins</subject><subject>HSF1 protein</subject><subject>Hsp40 protein</subject><subject>Hsp70 protein</subject><subject>Immunoprecipitation</subject><subject>Intertidal environment</subject><subject>Intertidal zone</subject><subject>Life Sciences</subject><subject>Marine molluscs</subject><subject>Microbiology</subject><subject>Nucleotide sequence</subject><subject>Original Article</subject><subject>Oysters</subject><subject>PCR</subject><subject>Physical growth</subject><subject>Signal transduction</subject><subject>Target recognition</subject><subject>Temperature tolerance</subject><subject>Thermal resistance</subject><subject>Thermal stress</subject><subject>Transcription</subject><subject>Zoology</subject><issn>1436-2228</issn><issn>1436-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9LwzAYh4Mo_pl-AQ8S8OKlmjRpmxxlqBsIG2yeQ9q87Spdq3m7wb69mZsTPHhKSJ7f7w15CLnm7J4zlj0gZzxOI8Z1xLSWcZQekXMuRRrFsUiPD_tYnZELxHcWQplgp-RMcJ0mUuhz4scO2r4u68L2ddfSrqSj2TOnc-sr6OkLtIB03K67Zg2O1i2dL8AvbUNnvQfE7Um_ADq1xbaDTjbYg6dDbxE7DIilVV1ZpPmGDhfjaYTweUlOStsgXO3XAXl7fpoPR9Hr5GU8fHyNCpElfZTyxCnBlQCRJFxnrky4kpon1lmVc-W0cBas0CAZS-OssIzn2kmQUjpnSzEgd7veD999rgB7s6yxgKaxLXQrNLGQQmrFlA7o7R_0vVv5NrwuUJkWUmXhLwck3lGF7xA9lObD10vrN4YzszVidkZMMGK-jZg0hG721at8Ce4Q-VEQALEDMFy1Ffjf2f_UfgEKRJUT</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Liu, Youli</creator><creator>Zhu, Qihui</creator><creator>Li, Li</creator><creator>Wang, Wei</creator><creator>Zhang, Guofan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TN</scope><scope>7U9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.F</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7130-2386</orcidid></search><sort><creationdate>20200401</creationdate><title>Identification of HSF1 Target Genes Involved in Thermal Stress in the Pacific Oyster Crassostrea gigas by ChIP-seq</title><author>Liu, Youli ; Zhu, Qihui ; Li, Li ; Wang, Wei ; Zhang, Guofan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-615d83183e355197df5184915ada8b18d93daea39e400627ca01b9d4e444ddaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binding sites</topic><topic>Biomedical and Life Sciences</topic><topic>Breeding</topic><topic>Chromatin</topic><topic>Crassostrea gigas</topic><topic>DNA</topic><topic>Engineering</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Heat shock</topic><topic>Heat shock factors</topic><topic>Heat shock proteins</topic><topic>HSF1 protein</topic><topic>Hsp40 protein</topic><topic>Hsp70 protein</topic><topic>Immunoprecipitation</topic><topic>Intertidal environment</topic><topic>Intertidal zone</topic><topic>Life Sciences</topic><topic>Marine molluscs</topic><topic>Microbiology</topic><topic>Nucleotide sequence</topic><topic>Original Article</topic><topic>Oysters</topic><topic>PCR</topic><topic>Physical growth</topic><topic>Signal transduction</topic><topic>Target recognition</topic><topic>Temperature tolerance</topic><topic>Thermal resistance</topic><topic>Thermal stress</topic><topic>Transcription</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Youli</creatorcontrib><creatorcontrib>Zhu, Qihui</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Zhang, Guofan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Marine biotechnology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Youli</au><au>Zhu, Qihui</au><au>Li, Li</au><au>Wang, Wei</au><au>Zhang, Guofan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of HSF1 Target Genes Involved in Thermal Stress in the Pacific Oyster Crassostrea gigas by ChIP-seq</atitle><jtitle>Marine biotechnology (New York, N.Y.)</jtitle><stitle>Mar Biotechnol</stitle><addtitle>Mar Biotechnol (NY)</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>22</volume><issue>2</issue><spage>167</spage><epage>179</epage><pages>167-179</pages><issn>1436-2228</issn><eissn>1436-2236</eissn><abstract>The Pacific oyster Crassostrea gigas , a commercially important species inhabiting the intertidal zone, facing enormous temperature fluctuations. Therefore, it is important to identify candidate genes and key regulatory relationships associated with thermal tolerance, which can aid the molecular breeding of oysters. Heat shock transcription factor 1 ( HSF1 ) plays an important role in the thermal stress resistance. However, the regulatory relationship between the expansion of heat shock protein (HSP) HSP 70 and HSF1 is not yet clear in C. gigas . In this study, we analyzed genes regulated by HSF1 in response to heat shock by chromatin immunoprecipitation followed by sequencing (ChIP-seq), determined the expression patterns of target genes by qRT-PCR, and validated the regulatory relationship between one HSP70 and HSF1. We found 916 peaks corresponding to HSF1 binding sites, and these peaks were annotated to the nearest genes. In Gene Ontology analysis, HSF1 target genes were related to signal transduction, energy production, and response to biotic stimulus. Four HSP70 genes, two HSP40 genes, and one small HSP gene exhibited binding to HSF1. One HSP70 with a binding site in the promoter region was validated to be regulated by HSF1 under heat shock. These results provide a basis for future studies aimed at determining the mechanisms underlying thermal tolerance and provide insights into gene regulation in the Pacific oyster.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31965439</pmid><doi>10.1007/s10126-019-09942-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7130-2386</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1436-2228
ispartof Marine biotechnology (New York, N.Y.), 2020-04, Vol.22 (2), p.167-179
issn 1436-2228
1436-2236
language eng
recordid cdi_proquest_miscellaneous_2343498089
source SpringerLink Journals - AutoHoldings
subjects Binding sites
Biomedical and Life Sciences
Breeding
Chromatin
Crassostrea gigas
DNA
Engineering
Freshwater & Marine Ecology
Gene expression
Gene regulation
Genes
Heat shock
Heat shock factors
Heat shock proteins
HSF1 protein
Hsp40 protein
Hsp70 protein
Immunoprecipitation
Intertidal environment
Intertidal zone
Life Sciences
Marine molluscs
Microbiology
Nucleotide sequence
Original Article
Oysters
PCR
Physical growth
Signal transduction
Target recognition
Temperature tolerance
Thermal resistance
Thermal stress
Transcription
Zoology
title Identification of HSF1 Target Genes Involved in Thermal Stress in the Pacific Oyster Crassostrea gigas by ChIP-seq
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20HSF1%20Target%20Genes%20Involved%20in%20Thermal%20Stress%20in%20the%20Pacific%20Oyster%20Crassostrea%20gigas%20by%20ChIP-seq&rft.jtitle=Marine%20biotechnology%20(New%20York,%20N.Y.)&rft.au=Liu,%20Youli&rft.date=2020-04-01&rft.volume=22&rft.issue=2&rft.spage=167&rft.epage=179&rft.pages=167-179&rft.issn=1436-2228&rft.eissn=1436-2236&rft_id=info:doi/10.1007/s10126-019-09942-6&rft_dat=%3Cproquest_cross%3E2379348714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379348714&rft_id=info:pmid/31965439&rfr_iscdi=true