Molecular-assisted breeding for improved carbohydrate profiles in soybean seed

Key message Two independent variant raffinose synthase 3 ( RS3 ) alleles produced an equivalent phenotype and implicated the gene as a key contributor to soybean seed carbohydrate phenotype. Soybean is an important crop because the processed seed is utilized as a vegetable oil and a high protein mea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2020-04, Vol.133 (4), p.1189-1200
Hauptverfasser: Hagely, Katherine B., Jo, Hyun, Kim, Jeong-Hwa, Hudson, Karen A., Bilyeu, Kristin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1200
container_issue 4
container_start_page 1189
container_title Theoretical and applied genetics
container_volume 133
creator Hagely, Katherine B.
Jo, Hyun
Kim, Jeong-Hwa
Hudson, Karen A.
Bilyeu, Kristin
description Key message Two independent variant raffinose synthase 3 ( RS3 ) alleles produced an equivalent phenotype and implicated the gene as a key contributor to soybean seed carbohydrate phenotype. Soybean is an important crop because the processed seed is utilized as a vegetable oil and a high protein meal typically used in livestock feeds. Raffinose and stachyose, the raffinose family of oligosaccharides (RFO) carbohydrate components of the seed, are synthesized in developing soybean seeds from sucrose and galactinol. Sucrose is considered positive for metabolizable energy, while RFO are anti-nutritional factors in diets of monogastric animals such as humans, poultry, and swine. To increase metabolizable energy available in soybean seed meal, prior research has been successful in deploying variant alleles of key soybean raffinose synthase ( RS ) genes leading to reductions or near elimination of seed RFO, with significant increases in seed sucrose. The objective of this research was to investigate the specific role of variants of the RS3 gene in a genomic context and improve molecular marker-assisted selection for the ultra-low (UL) RFO phenotype in soybean seeds. The results revealed a new variant of the RS3 allele ( rs3 snp5, rs3 snp6 ) contributed to the UL RFO phenotype when mutant alleles of RS2 were present. The variant RS3 allele identified was present in about 15% of a small set of soybean cultivars released in North America. A missense allele of the RS3 gene ( rs3 G75E ) also produced the UL RFO phenotype when combined with mutant alleles of RS2 . The discoveries reported here enable direct marker-assisted selection for an improved soybean meal trait that has the potential to add value to soybean by improving the metabolizable energy of the meal.
doi_str_mv 10.1007/s00122-020-03541-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2343051081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A617043701</galeid><sourcerecordid>A617043701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-6dec27e88154a93e28cadf810b5d9d432cd949211fe3e3ff42078ddd72d5a6e83</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhD3BAkbjAIWX8FSfHqqJQqQWJj7Pl2OPFVRIXO6m6_fV42UJZhJAPI80872hev4Q8p3BEAdSbDEAZq4FBDVwKWt8-ICsqOKsZE-whWQEIqKWS7IA8yfkSAJgE_pgccNo1AG23Ih8u4oB2GUyqTc4hz-iqPiG6MK0rH1MVxqsUr0vXmtTHbxuXzIxV6fkwYK7CVOW46dGUWlRPySNvhozP7uoh-Xr69svJ-_r847uzk-Pz2grVzHXj0DKFbUulMB1H1lrjfEuhl65zxYF1negYpR45cu8FA9U65xRz0jTY8kPyare3HPJ9wTzrMWSLw2AmjEvWjAsOkkJLC_ryL_QyLmkq1xVKyaYRXfcHtTYD6jD5OCdjt0v1cUMVCK5gSx39gyrP4RhsnHD7KfuC13uCwsx4M6_NkrM--_xpn2U71qaYc0Kvr1IYTdpoCnobuN4Frkvg-mfg-raIXty5W_oR3W_Jr4QLwHdALqNpjene_n_W_gAGkbPS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375664991</pqid></control><display><type>article</type><title>Molecular-assisted breeding for improved carbohydrate profiles in soybean seed</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hagely, Katherine B. ; Jo, Hyun ; Kim, Jeong-Hwa ; Hudson, Karen A. ; Bilyeu, Kristin</creator><creatorcontrib>Hagely, Katherine B. ; Jo, Hyun ; Kim, Jeong-Hwa ; Hudson, Karen A. ; Bilyeu, Kristin</creatorcontrib><description>Key message Two independent variant raffinose synthase 3 ( RS3 ) alleles produced an equivalent phenotype and implicated the gene as a key contributor to soybean seed carbohydrate phenotype. Soybean is an important crop because the processed seed is utilized as a vegetable oil and a high protein meal typically used in livestock feeds. Raffinose and stachyose, the raffinose family of oligosaccharides (RFO) carbohydrate components of the seed, are synthesized in developing soybean seeds from sucrose and galactinol. Sucrose is considered positive for metabolizable energy, while RFO are anti-nutritional factors in diets of monogastric animals such as humans, poultry, and swine. To increase metabolizable energy available in soybean seed meal, prior research has been successful in deploying variant alleles of key soybean raffinose synthase ( RS ) genes leading to reductions or near elimination of seed RFO, with significant increases in seed sucrose. The objective of this research was to investigate the specific role of variants of the RS3 gene in a genomic context and improve molecular marker-assisted selection for the ultra-low (UL) RFO phenotype in soybean seeds. The results revealed a new variant of the RS3 allele ( rs3 snp5, rs3 snp6 ) contributed to the UL RFO phenotype when mutant alleles of RS2 were present. The variant RS3 allele identified was present in about 15% of a small set of soybean cultivars released in North America. A missense allele of the RS3 gene ( rs3 G75E ) also produced the UL RFO phenotype when combined with mutant alleles of RS2 . The discoveries reported here enable direct marker-assisted selection for an improved soybean meal trait that has the potential to add value to soybean by improving the metabolizable energy of the meal.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-020-03541-z</identifier><identifier>PMID: 31960089</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Alleles ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Carbohydrate Metabolism ; Carbohydrates ; Cultivars ; DNA Shuffling ; Ecotype ; Energy ; Gene mutations ; Genes, Plant ; Genetic aspects ; Genotype &amp; phenotype ; Glycine max - metabolism ; Haplotypes - genetics ; Life Sciences ; Livestock ; Marker-assisted selection ; Mutants ; Mutation - genetics ; Oligosaccharides ; Original Article ; Phenotypes ; Plant Biochemistry ; Plant breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Polymorphism, Single Nucleotide - genetics ; Raffinose ; Reverse Genetics ; Seed meal ; Seeds ; Seeds - metabolism ; Soybean ; Soybeans ; Stachyose ; Sucrose ; Swine</subject><ispartof>Theoretical and applied genetics, 2020-04, Vol.133 (4), p.1189-1200</ispartof><rights>This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Theoretical and Applied Genetics is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-6dec27e88154a93e28cadf810b5d9d432cd949211fe3e3ff42078ddd72d5a6e83</citedby><cites>FETCH-LOGICAL-c476t-6dec27e88154a93e28cadf810b5d9d432cd949211fe3e3ff42078ddd72d5a6e83</cites><orcidid>0000-0001-6830-392X ; 0000-0003-4501-3940 ; 0000-0002-7402-2275 ; 0000-0002-4141-4790 ; 0000-0002-2741-4049</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-020-03541-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-020-03541-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31960089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hagely, Katherine B.</creatorcontrib><creatorcontrib>Jo, Hyun</creatorcontrib><creatorcontrib>Kim, Jeong-Hwa</creatorcontrib><creatorcontrib>Hudson, Karen A.</creatorcontrib><creatorcontrib>Bilyeu, Kristin</creatorcontrib><title>Molecular-assisted breeding for improved carbohydrate profiles in soybean seed</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message Two independent variant raffinose synthase 3 ( RS3 ) alleles produced an equivalent phenotype and implicated the gene as a key contributor to soybean seed carbohydrate phenotype. Soybean is an important crop because the processed seed is utilized as a vegetable oil and a high protein meal typically used in livestock feeds. Raffinose and stachyose, the raffinose family of oligosaccharides (RFO) carbohydrate components of the seed, are synthesized in developing soybean seeds from sucrose and galactinol. Sucrose is considered positive for metabolizable energy, while RFO are anti-nutritional factors in diets of monogastric animals such as humans, poultry, and swine. To increase metabolizable energy available in soybean seed meal, prior research has been successful in deploying variant alleles of key soybean raffinose synthase ( RS ) genes leading to reductions or near elimination of seed RFO, with significant increases in seed sucrose. The objective of this research was to investigate the specific role of variants of the RS3 gene in a genomic context and improve molecular marker-assisted selection for the ultra-low (UL) RFO phenotype in soybean seeds. The results revealed a new variant of the RS3 allele ( rs3 snp5, rs3 snp6 ) contributed to the UL RFO phenotype when mutant alleles of RS2 were present. The variant RS3 allele identified was present in about 15% of a small set of soybean cultivars released in North America. A missense allele of the RS3 gene ( rs3 G75E ) also produced the UL RFO phenotype when combined with mutant alleles of RS2 . The discoveries reported here enable direct marker-assisted selection for an improved soybean meal trait that has the potential to add value to soybean by improving the metabolizable energy of the meal.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carbohydrate Metabolism</subject><subject>Carbohydrates</subject><subject>Cultivars</subject><subject>DNA Shuffling</subject><subject>Ecotype</subject><subject>Energy</subject><subject>Gene mutations</subject><subject>Genes, Plant</subject><subject>Genetic aspects</subject><subject>Genotype &amp; phenotype</subject><subject>Glycine max - metabolism</subject><subject>Haplotypes - genetics</subject><subject>Life Sciences</subject><subject>Livestock</subject><subject>Marker-assisted selection</subject><subject>Mutants</subject><subject>Mutation - genetics</subject><subject>Oligosaccharides</subject><subject>Original Article</subject><subject>Phenotypes</subject><subject>Plant Biochemistry</subject><subject>Plant breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Raffinose</subject><subject>Reverse Genetics</subject><subject>Seed meal</subject><subject>Seeds</subject><subject>Seeds - metabolism</subject><subject>Soybean</subject><subject>Soybeans</subject><subject>Stachyose</subject><subject>Sucrose</subject><subject>Swine</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhi0EokvhD3BAkbjAIWX8FSfHqqJQqQWJj7Pl2OPFVRIXO6m6_fV42UJZhJAPI80872hev4Q8p3BEAdSbDEAZq4FBDVwKWt8-ICsqOKsZE-whWQEIqKWS7IA8yfkSAJgE_pgccNo1AG23Ih8u4oB2GUyqTc4hz-iqPiG6MK0rH1MVxqsUr0vXmtTHbxuXzIxV6fkwYK7CVOW46dGUWlRPySNvhozP7uoh-Xr69svJ-_r847uzk-Pz2grVzHXj0DKFbUulMB1H1lrjfEuhl65zxYF1negYpR45cu8FA9U65xRz0jTY8kPyare3HPJ9wTzrMWSLw2AmjEvWjAsOkkJLC_ryL_QyLmkq1xVKyaYRXfcHtTYD6jD5OCdjt0v1cUMVCK5gSx39gyrP4RhsnHD7KfuC13uCwsx4M6_NkrM--_xpn2U71qaYc0Kvr1IYTdpoCnobuN4Frkvg-mfg-raIXty5W_oR3W_Jr4QLwHdALqNpjene_n_W_gAGkbPS</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Hagely, Katherine B.</creator><creator>Jo, Hyun</creator><creator>Kim, Jeong-Hwa</creator><creator>Hudson, Karen A.</creator><creator>Bilyeu, Kristin</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6830-392X</orcidid><orcidid>https://orcid.org/0000-0003-4501-3940</orcidid><orcidid>https://orcid.org/0000-0002-7402-2275</orcidid><orcidid>https://orcid.org/0000-0002-4141-4790</orcidid><orcidid>https://orcid.org/0000-0002-2741-4049</orcidid></search><sort><creationdate>20200401</creationdate><title>Molecular-assisted breeding for improved carbohydrate profiles in soybean seed</title><author>Hagely, Katherine B. ; Jo, Hyun ; Kim, Jeong-Hwa ; Hudson, Karen A. ; Bilyeu, Kristin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-6dec27e88154a93e28cadf810b5d9d432cd949211fe3e3ff42078ddd72d5a6e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carbohydrate Metabolism</topic><topic>Carbohydrates</topic><topic>Cultivars</topic><topic>DNA Shuffling</topic><topic>Ecotype</topic><topic>Energy</topic><topic>Gene mutations</topic><topic>Genes, Plant</topic><topic>Genetic aspects</topic><topic>Genotype &amp; phenotype</topic><topic>Glycine max - metabolism</topic><topic>Haplotypes - genetics</topic><topic>Life Sciences</topic><topic>Livestock</topic><topic>Marker-assisted selection</topic><topic>Mutants</topic><topic>Mutation - genetics</topic><topic>Oligosaccharides</topic><topic>Original Article</topic><topic>Phenotypes</topic><topic>Plant Biochemistry</topic><topic>Plant breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Raffinose</topic><topic>Reverse Genetics</topic><topic>Seed meal</topic><topic>Seeds</topic><topic>Seeds - metabolism</topic><topic>Soybean</topic><topic>Soybeans</topic><topic>Stachyose</topic><topic>Sucrose</topic><topic>Swine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hagely, Katherine B.</creatorcontrib><creatorcontrib>Jo, Hyun</creatorcontrib><creatorcontrib>Kim, Jeong-Hwa</creatorcontrib><creatorcontrib>Hudson, Karen A.</creatorcontrib><creatorcontrib>Bilyeu, Kristin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hagely, Katherine B.</au><au>Jo, Hyun</au><au>Kim, Jeong-Hwa</au><au>Hudson, Karen A.</au><au>Bilyeu, Kristin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-assisted breeding for improved carbohydrate profiles in soybean seed</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>133</volume><issue>4</issue><spage>1189</spage><epage>1200</epage><pages>1189-1200</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message Two independent variant raffinose synthase 3 ( RS3 ) alleles produced an equivalent phenotype and implicated the gene as a key contributor to soybean seed carbohydrate phenotype. Soybean is an important crop because the processed seed is utilized as a vegetable oil and a high protein meal typically used in livestock feeds. Raffinose and stachyose, the raffinose family of oligosaccharides (RFO) carbohydrate components of the seed, are synthesized in developing soybean seeds from sucrose and galactinol. Sucrose is considered positive for metabolizable energy, while RFO are anti-nutritional factors in diets of monogastric animals such as humans, poultry, and swine. To increase metabolizable energy available in soybean seed meal, prior research has been successful in deploying variant alleles of key soybean raffinose synthase ( RS ) genes leading to reductions or near elimination of seed RFO, with significant increases in seed sucrose. The objective of this research was to investigate the specific role of variants of the RS3 gene in a genomic context and improve molecular marker-assisted selection for the ultra-low (UL) RFO phenotype in soybean seeds. The results revealed a new variant of the RS3 allele ( rs3 snp5, rs3 snp6 ) contributed to the UL RFO phenotype when mutant alleles of RS2 were present. The variant RS3 allele identified was present in about 15% of a small set of soybean cultivars released in North America. A missense allele of the RS3 gene ( rs3 G75E ) also produced the UL RFO phenotype when combined with mutant alleles of RS2 . The discoveries reported here enable direct marker-assisted selection for an improved soybean meal trait that has the potential to add value to soybean by improving the metabolizable energy of the meal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31960089</pmid><doi>10.1007/s00122-020-03541-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6830-392X</orcidid><orcidid>https://orcid.org/0000-0003-4501-3940</orcidid><orcidid>https://orcid.org/0000-0002-7402-2275</orcidid><orcidid>https://orcid.org/0000-0002-4141-4790</orcidid><orcidid>https://orcid.org/0000-0002-2741-4049</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2020-04, Vol.133 (4), p.1189-1200
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_2343051081
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agriculture
Alleles
Biochemistry
Biomedical and Life Sciences
Biotechnology
Carbohydrate Metabolism
Carbohydrates
Cultivars
DNA Shuffling
Ecotype
Energy
Gene mutations
Genes, Plant
Genetic aspects
Genotype & phenotype
Glycine max - metabolism
Haplotypes - genetics
Life Sciences
Livestock
Marker-assisted selection
Mutants
Mutation - genetics
Oligosaccharides
Original Article
Phenotypes
Plant Biochemistry
Plant breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Polymorphism, Single Nucleotide - genetics
Raffinose
Reverse Genetics
Seed meal
Seeds
Seeds - metabolism
Soybean
Soybeans
Stachyose
Sucrose
Swine
title Molecular-assisted breeding for improved carbohydrate profiles in soybean seed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-assisted%20breeding%20for%20improved%20carbohydrate%20profiles%20in%20soybean%20seed&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Hagely,%20Katherine%20B.&rft.date=2020-04-01&rft.volume=133&rft.issue=4&rft.spage=1189&rft.epage=1200&rft.pages=1189-1200&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-020-03541-z&rft_dat=%3Cgale_proqu%3EA617043701%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375664991&rft_id=info:pmid/31960089&rft_galeid=A617043701&rfr_iscdi=true