3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states
Aromaticity is a vital concept that governs the electronic properties of π-conjugated organic molecules and has long been restricted to 2D systems. The aromaticity in 3D π-conjugated molecules has been rarely studied. Here we report a fully conjugated diradicaloid molecular cage and its global aroma...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2020-03, Vol.12 (3), p.242-248 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 248 |
---|---|
container_issue | 3 |
container_start_page | 242 |
container_title | Nature chemistry |
container_volume | 12 |
creator | Ni, Yong Gopalakrishna, Tullimilli Y. Phan, Hoa Kim, Taeyeon Herng, Tun Seng Han, Yi Tao, Tao Ding, Jun Kim, Dongho Wu, Jishan |
description | Aromaticity is a vital concept that governs the electronic properties of π-conjugated organic molecules and has long been restricted to 2D systems. The aromaticity in 3D π-conjugated molecules has been rarely studied. Here we report a fully conjugated diradicaloid molecular cage and its global aromaticity at different oxidation states. The neutral compound has an open-shell singlet ground state with a dominant 38π monocyclic conjugation pathway and follows the [4
n
+ 2] Hückel aromaticity rule; the dication has a triplet ground state with a dominant 36π monocyclic conjugation pathway and satisfies [4
n
] Baird aromaticity; the tetracation is an open-shell singlet with 52 π-electrons that are delocalized along the 3D rigid framework, showing 3D global antiaromaticity; and the hexacation possesses
D
3
symmetry with 50 globally delocalized π-electrons, showing [6
n
+ 2] 3D global aromaticity. Different types of aromaticity were therefore accessed in one molecular cage platform, depending on the symmetry, number of
π
-electrons and spin state.
A conjugated diradicaloid cage has been synthesized and its aromaticity was investigated. The neutral compound and the dication have dominant monocyclic conjugation pathways and both are aromatic (the former following Hückel’s rule and the latter Baird’s rule). The tetracation ([6
n
+ 4] π-electrons) exhibits global 3D antiaromaticity whereas the hexacation ([6
n
+ 2] π-electrons) exhibits global 3D aromaticity and has high
D
3
symmetry. |
doi_str_mv | 10.1038/s41557-019-0399-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2343045626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2366603106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-e1f8c7a4fc938d9add7cd6dc978d502e7b2fc01a942dd603567b5cbacef090863</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMojo4-gBsJuHFTTZombZYyXmHAja5clDSXkiHTjEkLztub0nEEQQickPOd_4QPgAuMbjAi1W0sMKVlhjDPEOE8yw_ACS4pzQpS8MP9naAZOI1xhRCjBLNjMCOYU57OCfgg97B1vhEOiuDXorfS9ltoOyigGZzbQum71dCKXiuobBDKSuG8VVCKVkPRp0djdNBdD_2XVSnAdzD2iY9n4MgIF_X5rs7B--PD2-I5W74-vSzulpksStpnGptKlqIwkpNKcaFUKRVTkpeVoijXZZMbibDgRa4UQ4SysqGyEVIbxFHFyBxcT7mb4D8HHft6baPUzolO-yHWOSkIKijLR_TqD7ryQ-jS7xLFWErHaKTwRMngYwza1Jtg1yJsa4zq0Xw9ma-T-Xo0n4bn4HKXPDRrrfYTP6oTkE9ATK2u1eF39f-p38TRjtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2366603106</pqid></control><display><type>article</type><title>3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Ni, Yong ; Gopalakrishna, Tullimilli Y. ; Phan, Hoa ; Kim, Taeyeon ; Herng, Tun Seng ; Han, Yi ; Tao, Tao ; Ding, Jun ; Kim, Dongho ; Wu, Jishan</creator><creatorcontrib>Ni, Yong ; Gopalakrishna, Tullimilli Y. ; Phan, Hoa ; Kim, Taeyeon ; Herng, Tun Seng ; Han, Yi ; Tao, Tao ; Ding, Jun ; Kim, Dongho ; Wu, Jishan</creatorcontrib><description>Aromaticity is a vital concept that governs the electronic properties of π-conjugated organic molecules and has long been restricted to 2D systems. The aromaticity in 3D π-conjugated molecules has been rarely studied. Here we report a fully conjugated diradicaloid molecular cage and its global aromaticity at different oxidation states. The neutral compound has an open-shell singlet ground state with a dominant 38π monocyclic conjugation pathway and follows the [4
n
+ 2] Hückel aromaticity rule; the dication has a triplet ground state with a dominant 36π monocyclic conjugation pathway and satisfies [4
n
] Baird aromaticity; the tetracation is an open-shell singlet with 52 π-electrons that are delocalized along the 3D rigid framework, showing 3D global antiaromaticity; and the hexacation possesses
D
3
symmetry with 50 globally delocalized π-electrons, showing [6
n
+ 2] 3D global aromaticity. Different types of aromaticity were therefore accessed in one molecular cage platform, depending on the symmetry, number of
π
-electrons and spin state.
A conjugated diradicaloid cage has been synthesized and its aromaticity was investigated. The neutral compound and the dication have dominant monocyclic conjugation pathways and both are aromatic (the former following Hückel’s rule and the latter Baird’s rule). The tetracation ([6
n
+ 4] π-electrons) exhibits global 3D antiaromaticity whereas the hexacation ([6
n
+ 2] π-electrons) exhibits global 3D aromaticity and has high
D
3
symmetry.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-019-0399-2</identifier><identifier>PMID: 31959959</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403 ; 639/638/403/936 ; Analytical Chemistry ; Aromaticity ; Biochemistry ; Cages ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Conjugation ; Electron spin ; Ground state ; Inorganic Chemistry ; Organic Chemistry ; Oxidation ; Physical Chemistry ; Pi-electrons ; Symmetry</subject><ispartof>Nature chemistry, 2020-03, Vol.12 (3), p.242-248</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-e1f8c7a4fc938d9add7cd6dc978d502e7b2fc01a942dd603567b5cbacef090863</citedby><cites>FETCH-LOGICAL-c475t-e1f8c7a4fc938d9add7cd6dc978d502e7b2fc01a942dd603567b5cbacef090863</cites><orcidid>0000-0002-8231-0437 ; 0000-0001-8686-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-019-0399-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-019-0399-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31959959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Yong</creatorcontrib><creatorcontrib>Gopalakrishna, Tullimilli Y.</creatorcontrib><creatorcontrib>Phan, Hoa</creatorcontrib><creatorcontrib>Kim, Taeyeon</creatorcontrib><creatorcontrib>Herng, Tun Seng</creatorcontrib><creatorcontrib>Han, Yi</creatorcontrib><creatorcontrib>Tao, Tao</creatorcontrib><creatorcontrib>Ding, Jun</creatorcontrib><creatorcontrib>Kim, Dongho</creatorcontrib><creatorcontrib>Wu, Jishan</creatorcontrib><title>3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Aromaticity is a vital concept that governs the electronic properties of π-conjugated organic molecules and has long been restricted to 2D systems. The aromaticity in 3D π-conjugated molecules has been rarely studied. Here we report a fully conjugated diradicaloid molecular cage and its global aromaticity at different oxidation states. The neutral compound has an open-shell singlet ground state with a dominant 38π monocyclic conjugation pathway and follows the [4
n
+ 2] Hückel aromaticity rule; the dication has a triplet ground state with a dominant 36π monocyclic conjugation pathway and satisfies [4
n
] Baird aromaticity; the tetracation is an open-shell singlet with 52 π-electrons that are delocalized along the 3D rigid framework, showing 3D global antiaromaticity; and the hexacation possesses
D
3
symmetry with 50 globally delocalized π-electrons, showing [6
n
+ 2] 3D global aromaticity. Different types of aromaticity were therefore accessed in one molecular cage platform, depending on the symmetry, number of
π
-electrons and spin state.
A conjugated diradicaloid cage has been synthesized and its aromaticity was investigated. The neutral compound and the dication have dominant monocyclic conjugation pathways and both are aromatic (the former following Hückel’s rule and the latter Baird’s rule). The tetracation ([6
n
+ 4] π-electrons) exhibits global 3D antiaromaticity whereas the hexacation ([6
n
+ 2] π-electrons) exhibits global 3D aromaticity and has high
D
3
symmetry.</description><subject>639/638/403</subject><subject>639/638/403/936</subject><subject>Analytical Chemistry</subject><subject>Aromaticity</subject><subject>Biochemistry</subject><subject>Cages</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Conjugation</subject><subject>Electron spin</subject><subject>Ground state</subject><subject>Inorganic Chemistry</subject><subject>Organic Chemistry</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Pi-electrons</subject><subject>Symmetry</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKxDAUhoMojo4-gBsJuHFTTZombZYyXmHAja5clDSXkiHTjEkLztub0nEEQQickPOd_4QPgAuMbjAi1W0sMKVlhjDPEOE8yw_ACS4pzQpS8MP9naAZOI1xhRCjBLNjMCOYU57OCfgg97B1vhEOiuDXorfS9ltoOyigGZzbQum71dCKXiuobBDKSuG8VVCKVkPRp0djdNBdD_2XVSnAdzD2iY9n4MgIF_X5rs7B--PD2-I5W74-vSzulpksStpnGptKlqIwkpNKcaFUKRVTkpeVoijXZZMbibDgRa4UQ4SysqGyEVIbxFHFyBxcT7mb4D8HHft6baPUzolO-yHWOSkIKijLR_TqD7ryQ-jS7xLFWErHaKTwRMngYwza1Jtg1yJsa4zq0Xw9ma-T-Xo0n4bn4HKXPDRrrfYTP6oTkE9ATK2u1eF39f-p38TRjtY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ni, Yong</creator><creator>Gopalakrishna, Tullimilli Y.</creator><creator>Phan, Hoa</creator><creator>Kim, Taeyeon</creator><creator>Herng, Tun Seng</creator><creator>Han, Yi</creator><creator>Tao, Tao</creator><creator>Ding, Jun</creator><creator>Kim, Dongho</creator><creator>Wu, Jishan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8231-0437</orcidid><orcidid>https://orcid.org/0000-0001-8686-988X</orcidid></search><sort><creationdate>20200301</creationdate><title>3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states</title><author>Ni, Yong ; Gopalakrishna, Tullimilli Y. ; Phan, Hoa ; Kim, Taeyeon ; Herng, Tun Seng ; Han, Yi ; Tao, Tao ; Ding, Jun ; Kim, Dongho ; Wu, Jishan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-e1f8c7a4fc938d9add7cd6dc978d502e7b2fc01a942dd603567b5cbacef090863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/638/403</topic><topic>639/638/403/936</topic><topic>Analytical Chemistry</topic><topic>Aromaticity</topic><topic>Biochemistry</topic><topic>Cages</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Conjugation</topic><topic>Electron spin</topic><topic>Ground state</topic><topic>Inorganic Chemistry</topic><topic>Organic Chemistry</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Pi-electrons</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Yong</creatorcontrib><creatorcontrib>Gopalakrishna, Tullimilli Y.</creatorcontrib><creatorcontrib>Phan, Hoa</creatorcontrib><creatorcontrib>Kim, Taeyeon</creatorcontrib><creatorcontrib>Herng, Tun Seng</creatorcontrib><creatorcontrib>Han, Yi</creatorcontrib><creatorcontrib>Tao, Tao</creatorcontrib><creatorcontrib>Ding, Jun</creatorcontrib><creatorcontrib>Kim, Dongho</creatorcontrib><creatorcontrib>Wu, Jishan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Yong</au><au>Gopalakrishna, Tullimilli Y.</au><au>Phan, Hoa</au><au>Kim, Taeyeon</au><au>Herng, Tun Seng</au><au>Han, Yi</au><au>Tao, Tao</au><au>Ding, Jun</au><au>Kim, Dongho</au><au>Wu, Jishan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>242</spage><epage>248</epage><pages>242-248</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Aromaticity is a vital concept that governs the electronic properties of π-conjugated organic molecules and has long been restricted to 2D systems. The aromaticity in 3D π-conjugated molecules has been rarely studied. Here we report a fully conjugated diradicaloid molecular cage and its global aromaticity at different oxidation states. The neutral compound has an open-shell singlet ground state with a dominant 38π monocyclic conjugation pathway and follows the [4
n
+ 2] Hückel aromaticity rule; the dication has a triplet ground state with a dominant 36π monocyclic conjugation pathway and satisfies [4
n
] Baird aromaticity; the tetracation is an open-shell singlet with 52 π-electrons that are delocalized along the 3D rigid framework, showing 3D global antiaromaticity; and the hexacation possesses
D
3
symmetry with 50 globally delocalized π-electrons, showing [6
n
+ 2] 3D global aromaticity. Different types of aromaticity were therefore accessed in one molecular cage platform, depending on the symmetry, number of
π
-electrons and spin state.
A conjugated diradicaloid cage has been synthesized and its aromaticity was investigated. The neutral compound and the dication have dominant monocyclic conjugation pathways and both are aromatic (the former following Hückel’s rule and the latter Baird’s rule). The tetracation ([6
n
+ 4] π-electrons) exhibits global 3D antiaromaticity whereas the hexacation ([6
n
+ 2] π-electrons) exhibits global 3D aromaticity and has high
D
3
symmetry.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31959959</pmid><doi>10.1038/s41557-019-0399-2</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8231-0437</orcidid><orcidid>https://orcid.org/0000-0001-8686-988X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2020-03, Vol.12 (3), p.242-248 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_2343045626 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/638/403 639/638/403/936 Analytical Chemistry Aromaticity Biochemistry Cages Chemistry Chemistry and Materials Science Chemistry/Food Science Conjugation Electron spin Ground state Inorganic Chemistry Organic Chemistry Oxidation Physical Chemistry Pi-electrons Symmetry |
title | 3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T20%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20global%20aromaticity%20in%20a%20fully%20conjugated%20diradicaloid%20cage%20at%20different%20oxidation%20states&rft.jtitle=Nature%20chemistry&rft.au=Ni,%20Yong&rft.date=2020-03-01&rft.volume=12&rft.issue=3&rft.spage=242&rft.epage=248&rft.pages=242-248&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-019-0399-2&rft_dat=%3Cproquest_cross%3E2366603106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2366603106&rft_id=info:pmid/31959959&rfr_iscdi=true |