Detecting Light Dark Matter via Inelastic Cosmic Ray Collisions
Direct detection experiments relying on nuclear recoil signatures lose sensitivity to sub-GeV dark matter for typical galactic velocities. This sensitivity is recovered if there exists another source of flux with higher momenta. Such an energetic flux of light dark matter could originate from the de...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-12, Vol.123 (26), p.261802-261802, Article 261802 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Direct detection experiments relying on nuclear recoil signatures lose sensitivity to sub-GeV dark matter for typical galactic velocities. This sensitivity is recovered if there exists another source of flux with higher momenta. Such an energetic flux of light dark matter could originate from the decay of mesons produced in inelastic cosmic ray collisions. We compute this novel production mechanism-a cosmic beam dump experiment-and estimate the resulting limits from XENON1T and LZ. We find that the dark matter flux from inelastic cosmic rays colliding with atmospheric nuclei can dominate over the flux from elastic collisions with relic dark matter. The limits that we obtain for hadrophilic scalar mediator models are competitive with those from MiniBoone for light MeV-scale mediator masses. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.123.261802 |